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b Departament de F́ısica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

c ICREA - Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain and
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Coherent control of regions with spatial excitation of populations and coherence between two
lower states in three-level Λ-type quantum systems mediated by the self-induced transparency (SIT)
phenomenon is theoretically investigated with one- and two-color ultrashort pulses and with pulse
sequences beyond the slowly varying envelope (SVEA) and rotating wave (RWA) approximations.
The effects of different parameters characterizing the pulses and the medium on the location as well
as the width of such excited regions have been studied numerically by means of the finite-difference
time-domain (FDTD) method. It has been determined that with a scheme of two-pulse excitation
one can effectively control the position at which the region is written and its width. In particular,
the position of the excited region can be controlled by the area of the pulses. We find that the
maximum value of the population transferred to the lower excited state depends on the detuning
of the pulses with respect to the one-photon resonances, and that both position and width of the
region also depend on the temporal duration of the pulses. We show how after the excited region is
written, its position can be shifted by additional pulses. On the basis of numerical results, scaling
laws are formulated for the reported phenomena. With such control, the width of the region excited
inside the medium can be reduced to the order of the wavelength of the light.

PACS numbers: 42.50.Gy,42.50.Md,42.65.Re

I. INTRODUCTION

It is known that in three-level quantum systems two
types of formstable pulse propagation are possible, which
can be distinguished on the basis of dynamics in the
dressed state representation [1, 2]. Such unperturbed
propagation of pulses can be caused by phenomena either
of self-induced transparency (SIT) [3, 4] or electromag-
netically induced transparency (EIT) [5–7].

Recently, trapping, storage, and release of light pulses
in and out from collective medium excitations in a three-
level Λ-type system by the dynamical EIT effect have
been proposed theoretically [8] and demonstrated exper-
imentally in gaseous [9, 10] and in solid state media
[11, 12] (Pr : Y SO). One of the key points of light stor-
age with the EIT effect is the reduction of the group
velocity of the pulse to be stored, in the presence of an
additional external control field. It is well known that
the decrease of light group velocity can be realized be-
yond the EIT condition too, for instance by SIT phe-
nomena. Previously, the possibility of providing distinct
domains with spatial excitation of the two lower states by
SIT pulses in a three-level Λ-type system was reported in
Ref. [13] under the slowly varying envelope (SVEA) and
rotating wave (RWA) approximations, and in Ref. [14]
beyond these approximations. In the present study we
address the problem of coherent control (creation, ma-
nipulation and reading) of such excited regions by means
of the SIT effect.

The utilization of the EIT effect for effective storage
of light pulses has some restrictions [8, 15–17]. One of
them is that the bandwidth (inverse temporal duration)

of the pulse to be stored can not exceed the spectral width
of the transparency window induced by the EIT control
field. Another one is that the temporal duration of the
pulse to be stored should be larger than the decay times
of the quantum states in the medium, in order to perform
the coherent population trapping. Therefore, the speed
of storage, manipulation and reading of light pulses pro-
vided by such scheme is limited by the temporal duration
of the pulse to be stored, by the strength of the control
field (by which the bandwidth of the transparency win-
dow is established) and by the minimum relaxation times
of the quantum states in the medium. In experiments
with EIT storage of light pulses in solid-state media, see
for instance Refs. [11, 12], large intensities are needed,
which means that the area of the pulses becomes of the
order of π and that the effects of SIT phenomena become
of great importance. Moreover, as it was shown in Ref.
[17], when the amplitude of the probe pulse (which is
stored in the medium) becomes comparable with that of
the control field, the spectral width of the EIT window
becomes narrower, which results in significant absorption
of the probe pulse and in temporal broadening. There-
fore, the retrieval pulse becomes distorted. Results from
recent experiments [18] indicate that a GHz bandwidth of
storage speed can be feasible with EIT-based techniques.

In this paper we show that with the SIT phenomenon
under ultrashort pulse excitation there are no lower lim-
its on the time duration of the stored pulses and, there-
fore, one can provide optical storage at higher speed than
that provided with the EIT storage technique of Ref. [8].
Moreover, with SIT pulse storage one can enhance the
light pulse writing process by applying an additional cw



2

or pulsed coupling field at the frequency of the transition
uncoupled from the ground state (the transition |1〉 → |2〉
in Fig. 1(a), of frequency ω12), which reinforce the stim-
ulated coherent processes in the system.

Here we investigate in detail the possibilities for coher-
ent control of the spatial position (location) and width of
coherently excited regions in a three-level Λ-type medium
by ultrashort one- and two-color laser pulses of SIT type,
whose time duration is less than the characteristic relax-
ation times in the system, i.e., only coherent processes
are involved. In particular, we provide a numerical study
on the effects of atom density, pulse detuning from one-
photon resonance conditions, pulse area and time dura-
tion of pulses in one spatial dimension. We utilize the
full set of Maxwell and density matrix equations beyond
the RWA and the SVEA approximations [14] in order to
include all the nonlinear processes that could influence
the phenomena under consideration and to account in
the same way the optical field tuning close and far from
the resonances of the optical transitions, since the ultra-
short pulses that we investigate have wide spectral bands
which overlap with different transitions of the medium.
Furthermore, we consider ultrashort intense pulses, and
therefore as it has been shown previously [19], in order
to properly account for the carrier frequency changes and
reshaping of the pulses one needs to perform calculations
beyond the RWA and the SVEA approximations. In this
study the transitions of the medium are assumed to be
homogeneously broadened, although the results that we
obtain could also be tested in inhomogeneously broad-
ened media since the SIT phenomenon is also present in
such systems [3].

The other fundamental question of particular interest
in theory and in possible applications of light pulse stor-
age for optical information processing which we address
in this paper, is on which spatial and time scales such
writing, manipulation and reading can be achieved. The
scaling laws formulated here on the basis of numerical
simulations provide an answer to this question for three-
level Λ-type systems with excitation by SIT pulses or
pulse sequences. In particular, we study how one can
predict excitation of a medium by a pulse if the excita-
tion provided in the same medium by pulses with other
temporal durations and/or amplitudes is known. In our
numerical simulations, we identify the conditions under
which pulses with different temporal durations provide
similar spatial distributions of state excitations (level
populations and coherences) inside the medium. Under
these conditions, scaling laws are formulated for the lo-
cations and the spatial widths of the regions where light
pulses are stored. Additionally, the obtained scaling laws
are applied to show that excitation of level populations
and coherences in a three level Λ-type system can be
achieved in a spatial domain, in particular, of the order
and even less than the light wavelength. Moreover, the
scaling formulated here can be considered as a comple-
mentary tool for theorems formulated previously such as
the area theorem by McCall and Hahn [3].
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FIG. 1: (a) Spatial distribution of the population of the lower
excited level ρ22 of a three-level Λ-type system with the level
numbering indicated in the inset. (b) Instantaneous spatial
distribution of the oscillations in the real part of the coherence
ρ32 between levels |2〉 and |3〉 (solid line) and of the coherences
ρ31 and ρ21 (dashed lines). The amplitudes of the oscillations
of the coherences ρ31 and ρ21 are very small and almost undis-
tinguishable from the zero level in figure (b). The excitations
of population and coherences are induced in the medium (see
the text for parameters) by two-color (2π, 0.3π) pulses with
time duration τp = 20 fs . The first of these pulses has fre-
quency ω1 which is in resonance with the |1〉 → |3〉 transition
and its area is equal to 2π. The area of the second pulse is
equal to 0.3π and its frequency ω2 is in resonance with the
|1〉 → |2〉 transition. The centers of the pulses are initially
aligned in time.

The paper is organized as follows. In Section II the
control of the spatial width and the position of a region
with transfer of population and excitation of coherence
between the two lower levels in a three-level Λ-type quan-
tum system by one- and two-color pulses is considered in
one spatial dimension. Scaling laws and scaling condi-
tions under which these laws are realized, for interac-
tions of a three level Λ-type system with single (one- or
two-color) pulses and with pulse sequences are presented
in Section III and IV, respectively. In Section IV we
also discuss possibilities for coherent control (movement
and reading) of a previously excited region by pulse se-
quences. In Section V we summarize the obtained results.

II. DEPENDENCE OF THE EXCITED REGION

ON DIFFERENT PARAMETERS

In a previous article [14], some of us discussed the
formation of excited regions inside a three-level Λ-type
medium, where population from the ground level |3〉 [see,
the inset in Fig. 1 (a)] was transferred to the lower ex-
cited state |2〉 while pulses propagated through the sys-
tem. In this section we investigate the control of this
excited region by studying the effects of different param-
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eters on its position and width.

We consider propagation of laser pulses through a ho-
mogeneously broadened medium filled with three-level
quantum systems (atoms or molecules) of Λ-type [see the
inset in Fig. 1(a)] as described by the model presented
in the Appendix. This Λ-system can interact with elec-
tromagnetic radiation through two allowed (under the
electric-dipole approximation) transitions with frequen-
cies ω12 and ω13 [the numbering of quantum states is
depicted in the inset in Fig. 1(a)]. We will consider
propagation of one- or two-color hyperbolic secant (HS)
pulses, i.e. we will assume that the input pulse has one
or two spectral components. The central frequencies of
the input pulses are taken in resonance with the tran-
sitions |1〉 → |3〉 and |1〉 → |2〉, and are denoted by ω1

and ω2, respectively. Initial pulse areas are denoted by
A1 and A2. In what follows, the notation (mπ, nπ) is
used for pulses with mπ area of the pulse at ω1 and nπ
area of the pulse at frequency ω2. The pulses are consid-
ered initially aligned in time. We will use the notation
τp for the full width at half maximum (FWHM) of the
pulse intensity envelope. For definiteness and simplicity,
the time durations of the pulses ω1 and ω2 are consid-
ered equal with each other, and the ratio of frequencies
of optical transitions is fixed at ω12/ω13 = 0.7. The an-
gular frequency of the transition |1〉 → |3〉 is taken as
ω13 = 2.36 × 1015 s−1 (which corresponds to a wave-
length such as λ13 = 0.8 µm). Dipole moments of both
transitions are equal with each other. The medium is as-
sumed to be initially prepared in the ground state [state
|3〉 in Fig. 1(a)]. The value N = 2 × 1024 m−3 for con-
centration of active centers (atoms or molecules) in the
medium will be used. Solid-state crystals [11] can be
considered as active media under the investigations pre-
sented here. We disregard the relaxation processes in
the medium, because time durations of the pulses are
less than any relaxation times of the system. We will as-
sume that each pulse can interact with both transitions,
therefore, each pulse can induce variations in any tran-
sition of the system. Since the ω1 (ω2) pulse is far from
resonance with the ω12 (ω13) transition, the variation in-
duced by this pulse in this transition will be much smaller
than the one induced by the ω2 (ω1) pulse. The details of
the model and the finite-difference time-domain (FDTD)
scheme for the numerical integration is described in the
Appendix.

It has been previously reported [13, 14] that inside the
considered three-level Λ-type system any (mπ, nπ) pulse,
in particular a (2π, 0) pulse, undergoes frequency down-
conversion with almost total conversion from the ω1 pulse
into a pulse with frequency ω2 = ω1 − ω23. Simultane-
ously, population from the ground state |3〉 is effectively
transferred to the lower excited state |2〉 in a short region,
see Fig. 1(a). In what follows, we will name such region
as excited region. This region is surrounded on both sides
by regions with excited coherence between the two lower
states [see Fig. 1(b)]. Such excited regions can be con-
sidered as regions in which information is stored. Under

pulses with area larger than 2π, more than one of such
regions can be excited in the medium, see Ref. [14], Fig.
2, and the discussion below.

Now we address the question of how one can control
the position at which the excited regions appear and how
one can modify their widths. For this purpose we in-
vestigate the excitation of a three-level Λ-type quantum
system (initially prepared in the ground state |3〉) with
two-color pulses. One should note that the excitation
could be provided solely by one-color ω1 pulse, as shown
in Ref. [14]. In our simulation we use the second pulse
with frequency ω2 only in order to reduce the distance
at which the excited region appears. Therefore, hereafter
we consider excitation of the medium with (nπ, mπ) two-
color pulses for n 6= 0 and m 6= 0. The other effect of
the ω2 pulse is to provide initial coherence of the medium
at the time when the ω1 pulse enters the medium. The
same effect of the control field in the EIT scheme has
been outlined in Ref. [15].

First we fix the temporal pulse duration at τp = 40 fs
and investigate the effect of the pulse area A1 of the ω1

pulse on the excitation region when the area of the ω2

pulse is fixed at the value A2 = 0.3π. The results are
presented in Fig. 2, where the maximum value of the
population ρ22 transferred to level |2〉 [Fig. 2(a)], and
the distance at which the excited region is created and
its width [Fig. 2(b)] is plotted as a function of the pulse
area A1. From these data it follows that ω1 pulses with
area π < A1 < 2π provide a single excited region (see
closed rhombuses, circles and triangles in Fig. 2). Pulses
whose area is less than π can provide only partial pop-
ulation transfer (ρ22 < 1) in the excited region (see Fig.
2). When the pulse area is larger than 2π, the excited
region becomes divided in different subregions (see open
and closed rhombuses, circles and triangles in Fig. 2 for
A1 > 2π). The maximum population ρ22 in most of these
regions is almost equal to 1 but there are subregions in
which the maximum of ρ22 is less than 1. This behavior
is expected since each pulse with area larger than 2π is
divided during propagation through the medium into a
sequence of 2π pulses and a remaining radiation whose
area is less than 2π (see Refs. [3, 4, 14]); the pulses
with area 2π write excitation regions with total popula-
tion transfer at the central part of the region, but the
remaining radiation, whose area is less than 2π, induces
only partial population transfer, as it follows from the
data presented in the domain A1 < π in Fig. 2. In the
case presented in Fig. 2 when 2π < A1 < 4π, the initial
ω1 pulse is separated into a pulse with 2π area, which
writes the excited region with total population transfer
at the center, and a remaining emission, which induces
the appearance of an additional excited region with par-
tial population transfer at the center. From Fig. 2 it also
follows that increasing the pulse area A1, the distance at
which the excited region is written and the spatial width
of this region are increased. The increase in the distance
at which the excited region appears is attributed to the
increase in the velocity of pulse propagation with increas-
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FIG. 2: (color online) Dependence on the pulse area A1 of the
pulse with frequency ω1 = ω31 (a) of the maximum value of
the population of level |2〉 ρ22 (rhombuses); (b) the distance
D at which the maximum of ρ22 is achieved in the region
with population transfer and excited coherence (circles), and
spatial width d of this region (triangles). Excitation has been
performed by two-color HS (A1, 0.3π) pulses, whose frequen-
cies are at resonance with the two transitions of the Λ-system.
Temporal duration of these pulses is τp = 40 fs. Open rhom-
buses, circles and triangles denote the corresponding charac-
teristics of the second excited region that appears for A1 > 2π
as a result of the splitting of the initial ω1 pulse in a sequence
of 2π pulses and the remaining radiation with area less than
2π.
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FIG. 3: (color online) The same as in Fig. 2 but with de-
pendence on the pulse area A2 of the pulse with frequency
ω2 = ω12. Excitation has been performed by two-color
(2π, A2) pulses, whose frequencies are at resonance with the
two transitions of the Λ-system. The notations are the same
as in Fig. 2.

ing area (see Refs. [3, 4]). Increase of the spatial width
of the excited region, however, is caused by the increase
of the number of photons in the pulse (increase in the
pulse energy) with increasing the pulse area.

The frequency down-conversion of the pulse ω1 can be
enhanced by changing the pulse area of the pulse at fre-
quency ω2. An increase in the area of the pulse ω2 de-
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FIG. 4: (color online) Effects of the detuning δ = ω1 − ω31 =
ω2 − ω21 of the pulse frequencies from the one-photon reso-
nance (keeping the two-photon resonance condition) (a) and
of the concentration N of active centers in the medium (b) on
the characteristics of the excited region, which are the maxi-
mum value of the population in level |2〉 (rhombuses) and the
location D (circles) and the spatial width d (triangles) of the
region. The Λ-system is excited by two-color (2π, 0.3π) pulses
with temporal duration τp = 40 fs. In figure (a) the concen-
tration of active centers is assumed to be N = 2 × 1024m−3,
and in figure (b) the pulses are tuned to the resonance with
the corresponding transitions of the Λ-medium.

creases the distance at which the excited region appears.
For pulses with time duration τp = 40 fs this effect is
shown in Fig. 3, where the dependence of the excited
region characteristics on the area of the pulse ω2 is pre-
sented. This decrease in the distance at which the ex-
cited region appears is caused by stimulated emission in
the transition |1〉 → |2〉 and by the stimulated Raman
process in the transitions |3〉 → |1〉 → |2〉 in the presence
of the pulse ω2. With increasing the area of the pulse
ω2, these processes are enhanced. Because the spatial
width of the excited region and the maximum value of
the population in level |2〉 at its center are defined pre-
dominantly by the area of the pulse ω1, the changes in the
area of the pulse ω2 do not influence significantly these
characteristics, as it is clearly shown in Fig. 3.

From the previous discussion it follows that the max-
imum value of the population of level |2〉 at the center
of the excited region cannot be controlled effectively by
the parameters considered above. We have found that
such control as well as the control of the position and
the spatial width of the excited region can be performed
by detuning the pulse frequencies from the one-photon
resonance, provided the two-photon resonance condition
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is kept. This possibility is illustrated in Fig. 4 (a), where
the dependence of the excited region characteristics on
the detuning of two-color (2π, 0.3π) pulses at fixed val-
ues of the other parameters is plotted. The maximum
value of population of level |2〉 at the center of the excited
region is decreased by increasing the detuning, which si-
multaneously increases the spatial width of the excited
region and the distance at which such region is induced
by the pulse ω1.

The concentration of active atoms (molecules) can also
influence the considered phenomena. We have checked
that the effect of population transfer and excitation of
coherence persist at lower concentrations. However, at
low concentration (which is usually the case of experi-
ments with gaseous media), the distance at which the
excitation takes place and the width of the excited re-
gion increase noticeably, as shown in Fig. 4(b).

We have therefore shown that several parameters of the
pulses and of the medium can influence all the character-
istics of the excited region, namely: (i) its location in
space, (ii) its spatial width and (iii) the maximum popu-
lation of level |2〉 at the center of the region. By acting on
such parameters an effective control of the excited region
can be achieved.

III. TEMPORAL PULSE DURATION AND

SCALING LAWS

In this section we consider the temporal pulse duration
as the main control parameter, and we present results
on scaling properties of the light pulse interaction with
a three-level Λ-type quantum system. Indeed, we show
that pulses with different temporal durations and ampli-
tudes but with the same pulse areas can provide excited
regions with similar spatial distributions. On the basis
of the numerical simulations of the considered system we
formulate scaling laws, which reveal the relation between
the pulse duration and the location and spatial width of
the excited region.

We will illustrate the above outlined question with an
example of the excitation of the three-level Λ-system with
two-color (2π, 0.3π) pulses (introduced in the previous
section) at several values of temporal pulse durations by
keeping constant the area of pulses. The medium is ini-
tially prepared in the ground state |3〉 . The results are
presented in Fig. 5. Fig. 5(a) shows the scaling behav-
ior in the spatial distribution of population of level |2〉 in
the excited region, which is induced by pulses with three
different time durations. Fig. 5(b) depicts how the dis-
tance of the excited region and its spatial width depend
on the pulse duration. In Fig. 5(b), the numerical data
obtained by the FDTD integration of the model are rep-
resented by solid lines and symbols. From these data we
can derive the following scaling laws between the pulse
duration τp, the spatial location D and the width d of
the excited region:

D × τp = K1 , (1)

d × τp = K2 . (2)

where K1 and K2 are constants for a given medium.
Analytical curves described by Eqs. (1,2) are presented

by dashed lines in Fig. 5(b). The analytical curves are
indistinguishable from the numerical data, which clearly
shows the validity of the 1/τp scaling laws for the spatial
location D and the width d of the excited region. We
have performed calculations for different values of the
pulse area. In a general sense, the presented scaling laws
cannot be fulfilled if other effects come into play. Indeed,
we have observed deviation from the results of the pre-
sented scaling laws for pulses whose area becomes of the
order of π or smaller. In that case, ordinary absorption
dominates in propagation. The scaling laws are fulfilled
however for pulses whose area is near and larger than
2π. This result is expected, since as it is well known,
during the propagation in two- and three-level systems,
a pulse whose area is larger than 2π, is reshaped into
a 2π pulse, or into a sequence of 2π pulses. We have
checked that this reshaping occurs much before the spa-
tial excitation of the medium for single-frequency pulses.
In our simulations we find that each of these reshaped 2π
pulses undergoes frequency down conversion and writes
an excited region in the medium, and that these writ-
ten regions obey the scaling laws (1,2). Therefore, in
the 1D case we have demonstrated that under constant
pulse area the distance and spatial width of the region
excited by a pulse in a three-level Λ-system prepared in
the ground state is inversely proportional to the temporal
pulse duration.

Scaling laws (1,2) may be considered as complementary
to the area theorem formulated by McCall and Hahn [3].
For instance, from this theorem it follows that the evolu-
tion and, therefore, the final state of a medium is defined
by the area of the propagating pulses. From our scaling
conditions derived for the 1D case it follows that pulses
with the same pulse area but with different temporal du-
rations and envelope amplitudes will induce different spa-
tial distributions in the medium. These distributions are
scaled in space with a factor that is inversely proportional
to the ratio of temporal durations of the pulses.

From the analysis of Eqs. (1,2), it follows that a pulse
with a larger temporal duration (i.e., smaller envelope
amplitude) will excite a region inside the medium with
a shorter spatial width and at shorter spatial distance
than that with a smaller temporal duration (i.e., with a
larger envelope amplitude). Therefore, by increasing the
pulse duration (with simultaneous decrease in the enve-
lope amplitude, under the condition of constant pulse
area) the spatial width of the excited region can be made
very small, for instance with a value smaller than the
light wavelength. For the data presented in Fig. 5(b),
the spatial width of the excitation region indeed becomes
less than the light wavelength (λ = 800 nm) for a tempo-
ral pulse duration above 200 fs. Such region is presented
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FIG. 5: (color online) Scaling properties of the excitation of a
three-level Λ-type quantum system. (a) Spatial distribution
of population of level |2〉 for three different time durations
of the injected (2π, 0.3π) pulses. (b) Dependence of location
distance D (circles) and width d (triangles) of the region with
population transfer to the level |2〉 , and excited coherence
between the two lower levels, on the temporal width τp of
the injected two-color (2π, 0.3π) pulses. In figure (b), data
obtained with the FDTD numerical integration of the model is
represented by solid lines, whereas analytical curves obtained
by the expressions (1,2) are depicted by the dashed lines. Note
that in all cases the area of the pulses is kept constant, and
that the components of the two-color pulses are in resonance
with the corresponding transitions of the Λ-system.

in Fig. 5(a). It should be noted that the values of the
concentration of active atoms (molecules) which we used
in the simulations presented here are higher than those
that would normally be used in experiments with gaseous
media, but they can still be met in solid-state and semi-
conductor media. Therefore, our simulations predict that
in such three-level media, it is possible to store a light
pulse in the excitation of the populations of the medium
and the coherences (i.e. to store information) in a region
with a spatial scale smaller than the light wavelength.

IV. CONTROL OF THE EXCITED REGION

WITH MULTIPLE PULSES

In the previous sections it has been shown how one can
excite a region with given characteristics, in which a light
pulse is mapped on the populations and the coherence
of the two lower states, by exciting the medium with
single (one- or two-color) laser pulses of the SIT type.
In this section, we consider the problem of how, once
the excited region has been created, the excited region
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FIG. 6: (color online) Scaling laws and possibilities of ma-
nipulation of the excited region location by pulse sequences
with temporal duration of τp = 40 fs (a) and τp = 80 fs
(b). Numbers indicate the position of the excited region af-
ter the propagation of the corresponding number of pulses
through the medium. The pulses are as follows: the 1st pulse
is (2π, 0.3π), the 2nd pulse is (0, 2π), and the 3rd pulse is
(0, 2π). The time delay between the subsequent pulses in the
sequence is 8τp = 320 fs (a) and 640 fs (b).

characteristics, in particular its position, can be modified
by means of subsequent light pulses. We also consider
how one can extract the information stored in the system.
Further, we will show that the scaling laws introduced
above can also be extended to this more general case.

Let us consider writing and subsequent modification of
a excited region by two sequences of laser pulses in the
medium with length L = 17µm. In each sequence three
pulses are injected. The first pulse is a two-color (ω1, ω2)
pulse. It creates (writes) the excited region inside the
medium. The second pulse is injected into the system
after the writing (ω1, ω2) pulse with a delay of 8τp, and
the last (third) pulse is injected with the same delay but
with respect to the second pulse. The two last pulses
are tuned at resonance with the transition |1〉 → |2〉 [see
Fig. 1(a)], i.e., they have frequency ω2 = ω12. All pulses
in the sequence have the same time duration τp. Let us
call the pulses with frequency ω2 = ω12 that come after
the writing pulse as reading or controlling pulses. Here
it will be shown that: (i) the written excited region can
be moved by controlling pulses with frequency ω2 = ω12 ;
(ii) the written region can be extracted from the medium
by applying a sequence of such pulses; and finally, (iii) the
scaling laws for the excited regions can be extended if the
writing and controlling pulses of both sequences meet the
scaling conditions introduced in section III. Moreover, we
generalize the scaling conditions to the case of a medium
prepared initially in different states, with scaled spatial
distributions of the populations and coherences, as it will
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be further explained below.

Propagation of controlling ω2 pulses outside the region
excited by writing pulses is weakly perturbed because of
the small population of level |2〉 and because of the weak
interaction of ω2 pulses with the transition |1〉 → |3〉 (ω2

pulses are far from resonance with this transition). In
the excited region, however, these pulses induce transfer
of the population from the excited state |2〉 to the ground
state |3〉 with simultaneous emission of a pulse ω1. This
process results in removing (cleaning) the excited region
(or its main part). Now, the generated ω1 pulse will prop-
agate (in some cases together with part of the reading ω2

pulse) and will undergo frequency-down conversion in the
same manner as it was done previously by writing with
the (ω1, ω2) pulse. Therefore, this ω1 pulse will write
the excited region at a new location, in such a way that
the excited region can be moved either in the forward
direction (by injection of ω2 pulses in the same direction
as the initially writing pulses), or in the backward di-
rection (by injection of ω2 pulses in the direction that is
opposite to the propagation direction of the initially writ-
ing pulses). Such movement of the excited region in the
forward direction is shown in Fig. 6(a) for a sequence
of pulses with τ = 40 fs and in Fig. 6(b) for another
sequence of pulses with τ = 80 fs. In both sequences
the area of the respective pulses is the same (see figure
caption). In these figures the numbers near the curves
indicate the position of the excited region induced after
the propagation of the corresponding number of pulses
in the sequence. We found that the spatial width of the
moved excited region is only slightly modified.

It is possible to extract the information from a written
region by an appropriate sequence of pulses, as depicted
in Fig. 6(a) for the particular case of pulses with a time
duration such as τp = 40 fs. In such case the last ω2

pulse induces transfer of population from level |2〉 into
the ground state |3〉 with simultaneous appearance of a
ω1 pulse, but the last one does not have enough time to
write the excited region at a new location, and therefore
this pulse leaves the medium. Hence, a spectral compo-
nent at frequency ω1 will appear in the output spectra
of the emission after the injection of the last ω2 pulse
in the sequence. We have found that the same writing-
reading procedure can be performed with pulses of dif-
ferent pulse area. Therefore, it has been shown that the
location of the excited regions in a Λ-type quantum sys-
tem can efficiently be driven by short pulses of SIT-type
whose frequency is near the resonance frequency ω12 of
the transition |1〉 → |2〉 [see. Fig. 1(a)].

Fig. 6 also demonstrates the scaling properties in the
manipulation of the excited region by pulse sequences.
The first pulses in each sequence write the excited re-
gions inside the medium. From Fig. 6, it is clear that
the regions excited by the first sequence of pulses (Fig.
6(a), τp = 40 fs) scale with a factor 2 with respect to the
regions excited by the second sequence of pulses (Fig.
6(b), τp = 80 fs). We also note that the second pulse
in each sequence, and the consecutive ones, will enter a

medium which is prepared with initial conditions of pop-
ulations and coherences that are also scaled with respect
to each other in their distribution in space. From Fig. 6,
it follows that after the movement of the excited region,
the final distributions of the populations in the two me-
dia indeed meet scaling properties [see curves 2 in Fig.
6(a) and Fig. 6(b)], which is in accordance with the scal-
ing laws (1,2) under the following conditions: (i) initially,
the media are prepared in states with scaled spatial dis-
tributions; (ii) the scaling factor of the distributions in
the media is defined by the ratio of the temporal dura-
tions of the pulses, (iii) the area of the pulses in the two
cases are equal. We found also that the spatial width
of the excited region is only slightly modified during the
movement, but in the same manner in each medium. The
reported scaling behavior is possible because each corre-
sponding pulse in the first and in the second sequence, as
well as the considered media after interaction with each
pulse, meet the scaling conditions. Therefore, we have
shown that the scaling behavior is valid not only in writ-
ing the excited region by a single pulse, but also during
the subsequent driving of the excited region by the pulse
sequences. In our numerical calculations we also find that
the validity of the scaling laws for pulse sequences has the
same restrictions as those for single pulses, i.e. deviations
from the scaling laws become significant at small value
of the area of the pulses in the pulse sequences, namely,
when it becomes on the order of π or smaller. Hence,
by means of numerical simulations we have generalized
the scaling conditions and the scaling laws that were ob-
tained for single pulse excitation and for an homogeneous
space distribution of atoms (molecules) between different
states to the case of excitation with sequences of pulses in
media with inhomogeneous initial spatial distributions.

V. SUMMARY AND CONCLUSIONS

In this paper we have investigated the possibilities of
coherent control in one spatial dimension of the popu-
lation transfer from the ground |3〉 to the lower excited
state |2〉 , and the excitation of the coherence between
these two states, in a three-level Λ-type system. The
system is prepared initially in the ground state and is
excited by one- and two-color ultrashort SIT pulses or by
pulse sequences. Such pulses, whose central frequency is
near resonance with the transition from the ground state
[transition |3〉 → |1〉 in Fig. 1(a)], induce a spatial region
in which population is transferred from the ground state
|3〉 to the lower excited state |2〉 in a short spatial do-
main, which is surrounded in both sides by regions with
excited coherence between the two lower states.

The excited region can be characterized by (i) loca-
tion, (ii) spatial width and (iii) maximum population
transferred to the lower excited level. We have inves-
tigated the effects of different parameters of the pulses
and of the medium on such excited regions. We have
shown that the area of a pulse ω2, whose frequency is
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near resonance with the transition |1〉 → |2〉 , can effec-
tively control the position of the excited region, leaving
the other characteristics of the region unaffected. It has
been found that the maximum value of the population
of level |2〉 can be effectively controlled by the detuning
of the pulse frequencies from the one-photon resonances.
It has been also shown that both position and width of
the excited region (with the maximum value of the pop-
ulation of level |2〉 being unaffected) can be controlled
by varying the temporal duration of the pulses. In par-
ticular, the excited region width can be made smaller
than the light wavelength. The results reported in this
paper might open new possibilities for ultrafast writing,
storage, reading and processing of information by optical
methods on the femtosecond time scale and in nanome-
ter spatial regions. The spatial-dependent excitation that
we report may be feasible in solid-state or semiconductor
materials, and also in liquids or in relatively dense gases.

The possibility of manipulating the region with spatial-
dependent excitations of population and coherence has
been investigated under the condition that the pulse du-
ration is less than the characteristic relaxation times of
the system. We have shown that the position of the ex-
cited region can be modified by additional pulses after
it is written in the medium. Indeed, it has been shown
that the written region can be moved, with keeping the
width of the region almost unaffected, by injection of
pulses whose frequency is at resonance with the transi-
tion |1〉 → |2〉. Moreover, an information written in the
excited region can be extracted from the medium by ap-
plying a sequence of such pulses. Finally, on the basis
of our numerical simulations, we have formulated scaling
laws and conditions under which different pulses with
scaled amplitudes and time durations, but with the same
pulse areas, will induce scaled excitation domains in the
medium. It has been also demonstrated that the scaling
properties can be extended to the case where the initial
space distributions of the atoms (molecules) among dif-
ferent states meet the scaling conditions, and the excita-
tion is provided with sequences of pulses whose durations
meet the same scaling conditions.

The theoretical results obtained in this paper on co-
herent control of regions with medium excitation of pop-
ulation and coherences by SIT pulses, and the effects
of the different parameters characterizing the pulses and
the medium, may be used in applications of optical in-
formation processing [20, 21]. The obtained scaling laws
could be considered as a helpful tool in providing the spa-
tial and time scale limits in some development of optical
computing devices and their scaling properties.
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VI. APPENDIX

Propagation of electromagnetic linearly polarized
plane waves in one spatial dimension (1D), for definite-
ness along the x axis, can be described by the Maxwell
equations in a Cartesian basis as follows:

∂

∂t

(

By

Dz

)

=
∂

∂x

(

Ez

Hy

)

, (3)

where Ez (Dz) is the electric field (displacement), and Hy

(By) is the magnetic field (induction) vector component;
∂/∂t and ∂/∂x are the time and spatial derivatives.

In the electric dipole approximation, the evolution of a
three-level quantum systems (atoms or molecules) of Λ-
type (see the inset in Fig. 1(a)) driven by the propagated
electromagnetic field can be described by the density ma-
trix equations:

∂tσ11 = −γ1σ11 − 2ΩEImσ13 − 2ΩEβImσ12 ,

∂tσ22 = −γ2σ22 + γ12σ11 + 2ΩEβImσ12 ,

∂tσ33 = +γ13σ11 + γ23σ22 + 2ΩEImσ13 ,

∂tσ12 = − (Γ12 + iω12)σ12

+iΩE (β (σ11 − σ22) − σ∗
23

) ,

∂tσ13 = − (Γ13 + iω13)σ13

+iΩE ((σ11 − σ33) − βσ23) ,

∂tσ23 = − (Γ23 + iω23)σ23 + iΩE (σ∗
12

− βσ13) , (4)

where σ11, σ22 and σ33 represent the populations of lev-
els 1, 2 and 3, respectively (see the inset in Fig. 1a and
normalization below). γl =

∑

m γlm, with γlm being the
decay rate of the population from the state |l〉 to the
|m〉 one; Γlm are the decay rates of the off-diagonal den-
sity matrix elements σlm (medium polarizations); and
ωlm = |Em −El|/h̄ are the angular frequencies of optical
transitions |l〉 − |m〉, with El,m being the energies of the
quantum states |l〉 and |m〉. In deriving Eqs. (4) it was
assumed that only the transitions |1〉−|2〉 and |1〉−|3〉 are
allowed in the electric dipole approximation (d23 = 0).

In Eqs. (4) the normalization of the variables is:

Ω{E,D,B,H} = {Ez, Dz, By, Hy} d13/h̄ ,

σlm = ρlmNa2d2

13
/h̄ , (5)

β = d12/d13 .

where ρlm are the density matrix elements, dlm is the
effective dipole coupling coefficient (electric dipole mo-
ment) of the optical transition |l〉 − |m〉, and Na is the
density of polarizable atoms. For a closed quantum sys-
tem considered here the probability conservation condi-
tion ρ11 +ρ22 +ρ33 = 1 applies, reducing in (4) the num-
ber of equation for the level populations by one. When
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only the transitions |1〉 − |2〉 and |1〉 − |3〉 are allowed in
the electric dipole approximation, and for nonmagnetic
materials, the constitutive expressions, that complete a
picture, read as follows:

ΩE = (ΩD + Re [σ13 + βσ12]) /ε0 , (6)

ΩB = ΩHµ0 , (7)

where ε0 and µ0 are the electric and magnetic constants,
respectively. Equations (3)-(7) are investigated along this
article with a FDTD scheme that is detailed below.

Yee’s discretization (staggered in space and in time)
[22] for the electric and magnetic fields has been used
in our modeling. On both sides the spatial grid is ter-
minated by perfectly matched layers [23, 24]. We have
applied two FDTD algorithms for the solution of the den-
sity matrix and Maxwell equations, which are based on
Runge-Kutta-Fehlberg and predictor corrector methods
described in details in Refs. [14] and [25], respectively.
Both these algorithms give the same results reported in
this paper.

For definiteness, in this paper we consider propagation
of single or two-color phase-matched hyperbolic secant

(HS) pulses, i.e. we will assume that the input pulse has
one or two spectral components at central frequencies ω1

or/and ω2 with amplitudes Eω1
or/and Eω2

, respectively.
The waveform of such pulses at the input point (x = 0)
can be described as follows:

Ez (x = 0, t) = Eω1
(t) + Eω2

(t) = (8)

= Eω1

cos (ω1 (t − t0) + φ)

cosh ((t − t0) /tp)
+ Eω2

cos (ω2 (t − t0))

cosh ((t − t0) /tp)
.

where τp = 2arccosh
(√

2
)

tp is the full width at half max-
imum (FWHM) of the pulse intensity envelope, and t0 is
the time at which the pulse envelope maximum enters the
grid; φ is the initial phase-difference between the Eω1

and
Eω2

pulses. In all our simulations reported here we as-
sumed that (1) φ = 0; (2) the dipole moments of the tran-
sitions are equal d13 = d12 = 4.2×10−29 Cm (β = 1), and
(3) the relaxation terms in equations (4) are disregarded,
i.e. γlm = Γlm = 0, since we consider ultrashort pulses,
time durations of which are shorter than the relaxation
times of the medium polarization and populations.
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