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Propagation of single- and two-color hyperbolic secant femtosecond laser pulses in a three-level A-type
quantum system is investigated by solving the Maxwell and density matrix equations with the finite-difference
time-domain and Runge-Kutta methods. As a first study of our modeling, we simulate pulse self-induced
transparency (SIT) in two-level systems and see how this phenomenon can be controlled by manipulating the
initial relative phase between the SIT pulse and a second control pulse, provided the ratio between both pulse
frequencies obeys the relation w;/w,=3. We then examine frequency down-conversion processes that are
observed with single- and two-color pulses the envelope area of which is equal to or a multiple of 27, for pulse
frequencies close to resonance with the transitions of a three-level A medium. Also, phase-sensitive phenom-
ena are discussed in the case of two-color w-3w pulses propagating resonantly in the three-level system. In
particular, possibilities for such coherent control are found for frequency down-conversion processes when the
ratio of the frequencies of optical transitions is w3/ w;,=3. The conditions for quantum control of four-wave
mixing processes are also examined when the pulse frequencies of two-color w-3w pulses are far from any
resonance of the three-level system. We demonstrate the possibility to cancel the phase sensitivity of the

four-wave coupling in a A-type system by competition effects between optical transitions.
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I. INTRODUCTION

Noticeable achievements in modern optics, such as, for
instance, generation of few-cycle pulses [1], experimental
demonstration of light slowdown [2,3], its application for
enhancement of nonlinear processes [3] and quantum infor-
mation processing [3,4], coherent population transfer phe-
nomena [5], or nonlinear ultrafast spectroscopy techniques
and coherent control [6], among others, provide important
challenges for theoretical modeling, since, e.g., in some
cases the theory must go beyond the most widely used ap-
proximations, such as the rotating-wave (RWA) or the slowly
varying envelope (SVEA) approximations. Therefore, the de-
velopment of models which treat Maxwell equations without
any approximations and which consider the dynamics of the
density matrix or the Schrodinger equations for more than
two levels, with account for quantum-state coherences and
level populations, is of great importance.

During the past decade, the finite-difference time-domain
(FDTD) method [7] has become widely explored in the op-
tical community for solving the full set of Maxwell equa-
tions. The optical properties of the medium have been exam-
ined mainly on the basis of simple two-level models [8—14].
An extension of the two-level model has recently been used
for modeling light interactions with inhomogeneously broad-
ened materials [15]. In some papers, the dynamics for more
than two levels have been taken into account, but consider-
ing an adiabatic elimination of the medium polarizations
(rate equations models) to investigate light interacting with
semiconductor [16] and solid-state [ 17] materials. The FDTD
model for light propagation in a three-level quantum system
(with two degenerate levels and in two spatial dimensions)
has been introduced in Ref. [18] through the Gell-Mann rep-
resentation of the density matrix equations. In that work, the
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propagation of 2 pulses through the absorbing medium has
been considered in a system with a twice-degenerate upper
level and a nondegenerate lower level. The models men-
tioned above omit all or some of the coherences between
different states. It is well known, however, that optical co-
herences play a key role in many optical processes and phe-
nomena [19]. Only recently, interaction of laser pulses with a
V-type three-level system without such simplification has
been investigated with a FDTD predictor-corrector method
[20].

In this paper we introduce a model to study the interaction
of ultrashort pulses with a three-level quantum system either
of a A, V, or a cascade configuration in one spatial dimen-
sion. We solve the full Maxwell and the density matrix equa-
tions by combining the FDTD and Runge-Kutta methods. In
particular, the interaction of a three-level A system with two
initially synchronized femtosecond pulses is considered in
two cases: when the pulse frequencies are close to resonance
with the allowed optical transitions and when they are tuned
far from resonance of any of the two optical transitions. The
former case is of interest for absorption-emission resonance
spectroscopy, coherent population trapping (CPT), electro-
magnetically induced transparency (EIT), and related phe-
nomena. The latter case is important, for instance, in ultrafast
four-wave mixing or Raman spectroscopy techniques. We
next further detail these different topics.

A. Near to resonance coherent pulse propagation

In the broad area of matter interactions with light pulses,
there is considerable interest in investigations of solitarylike
optical pulses that propagate resonantly in a medium without
substantial changes of their wave forms. It is known that
pulses, the envelope area of which is equal to 27, propagate
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FIG. 1. Three-level quantum system of A- (a), cascade- (b), and
V- (c) type configurations.

without substantial changes of their wave forms when their
central frequency is in resonance with a two-level transition.
This phenomenon was first considered for two-level media in
Ref. [21] under the RWA and SVEA (see also Ref. [22]) and
in Refs. [8,9] by a direct integration of the full Maxwell-
Bloch equations in one spatial dimension by using a FDTD
method. Such form-stable pulse propagation is well known
to be caused by self-induced transparency (SIT) phenomena
(in the frame of the area theorem [21]). It is also well known
that any pulse, the area of which is larger than 2, is split
into a chain of 27 pulses during propagation [21], and there-
fore only pulses with an area of 27 propagate in a two-level
medium with preserving wave form.

In Refs. [23,24], studies were made under the RWA and
SVEA. It was shown that in a three-level system two types
of form-stable pulse propagation are possible and that they
can be distinguished on the basis of dynamics in the dressed-
state representation. Such unperturbed propagation of pulses
can be caused either by EIT (EIT pulses) or by SIT (SIT
pulses) [24]. A large population in the dark state indicates
dominance of EIT effects, while a depopulated dark state is a
signature of SIT. In Ref. [24], it was shown how SIT-pulse
propagation is unstable and that it is reduced to EIT-pulse
propagation. One type of form-stable pulses, for which an
analytical solution has been obtained [21], is the so-called
hyperbolic secant (HS) pulses. In the present work we will
consider propagation of such pulses by numerical methods.
In particular, we will investigate the effects of two-color ul-
trashort pulses propagating coherently in a three-level A-type
medium [see Fig. 1(a)] beyond the RWA and SVEA. These
approximations have been disregarded in order to properly
account for nonlinear effects of the emission for any detun-
ing, which in our calculations is considered from close to
resonance up to far from the one-photon resonance condi-
tion.

A theorem similar to the area theorem (called the dark
area theorem) has been formulated in Ref. [25] for propaga-
tion of pulses in a three-level A-type system with strong
inhomogeneous broadening of atomic transitions. This theo-
rem describes the evolution of the envelope area of a dark
field which governs the dynamics of the two lower dressed
states. From this theorem it follows that under appropriate
conditions form-stable propagation of two-color phase-
matched pulses should be possible in a three-level system. In
the present study, we numerically address the question of
form-stable propagation of single and phase-matched two-
color HS pulses with envelope area of the order of 2 in the
case of homogeneous broadening.
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B. Far from resonance coherent pulse propagation

The studies presented in this article are also devoted to the
investigation of coherent control schemes by multicompo-
nent (multicolor) ultrashort laser pulses when their frequen-
cies are far from any resonance of the quantum system. The
relative phase between the pulses can strongly modify pulse
propagation in some cases and can be the origin for new
spectroscopy methods, as has been recently reported in the
case of w-3w femtosecond pulses propagating in two-level
systems [13,14]. Indeed, in Ref. [13], it was discussed how
the amplitude of the four-wave mixing signal at frequency
5w (i.e., the anti-Stokes component) can be controlled by the
relative phase between the w-3w intensity- and phase-
matched pulses driving the interaction. It was then shown
that such a phase-sensitive effect can be canceled by an ap-
propriate choice of the frequency of the fields, for a given
two-level transition. Such a cancellation takes place when
the ac Stark frequency shifts of the energy levels caused by
each pulse are compensated [14]. In the present study, we
extend these investigations to the case of a three-level A
system by examining the effect of an additional (third) level
on phase-sensitive coherent phenomena. The calculations are
performed beyond the RWA and SVEA since we consider
ultrashort pulses and, as has been shown in Ref. [14], coun-
terrotating terms play a key role in the cancellation of phase-
sensitive four wave mixing. We will show numerically that
the phase sensitivity of four-wave mixing remains in a three-
level system and that one can find a field frequency w at
which the phase sensitivity is canceled due to competition
effects between the different transitions of the A scheme.

The paper is organized as follows. In Sec. II we introduce
the Maxwell and density matrix equations for the three-level
system in one spatial dimension and describe the method of
their solution. Phase-sensitive pulse propagation in a two-
level medium is reported in Sec. III. Results of propagation
of single- and two-color HS pulses which envelope area is a
multiple of 27 and the central frequencies of which are in
resonance with the optical transitions of a three-level A sys-
tem are presented in Sec. IV. Phase control of four-wave
mixing of two-color w-3w pulses detuned from the optical
resonances of the A system is discussed in Sec. V. A sum-
mary of the results and conclusions are given in Sec. VL.

II. MODEL

Let us consider propagation of electromagnetic linearly
polarized plane waves in a medium filled with three-level
quantum systems (atoms or molecules) either in a A, V, or
cascade configuration (see Fig. 1). When propagation in one
spatial dimension (1D) is considered—for instance, along the
x axis—only two nonzero electromagnetic field components
are retained in the Maxwell equations. In this case, in a Car-
tesian basis, the 1D Maxwell equations can be expressed as

follows:
A N
a\D,) ox\H,)’

where E, and D, are the electric field and electric displace-
ment vector components, and H, and B, are the magnetic
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field and magnetic induction vector components, respec-
tively.

On the other hand, the evolution of a three-level quantum
system in the electric-dipole approximation can be described
by the equations for the density matrix elements as

do11=(3,011),— 20 Im a3 - 2QB81Im 7y,
903 = (9,0), + 2Q B Im 7,
0,033 = (9,043), + 2Qp Im 05,
901, == (L p+igwp)on+iQg oy — o) - 0';3],
do3==(I'i3+iq3013) 013+ Q[ (01, — 033) = Bos],

9,093 =— Doz + iqr30y3) 093 + iQp(a), - Boyy),  (2)

where o, 0,5, and o33 represent the populations of levels 1,
2, and 3, respectively (see Fig. 1 and normalization below).
The terms (d,07;;), describe the relaxation of the population of
level i in the absence of incident electromagnetic waves.
These terms should be specified for each particular type of
three-level system. For the A-type system that we have con-
sidered in the present simulations they can be expressed as
(Go11),==011,  (802),==20n+ Yoy, and  (9,04)),
=+ Y1301+ V2302 V=20 Yim With 7, being the decay rate
of the Ith-level population to the mth-level one; I';,, are the
decay rates of the off-diagonal density matrix elements oy,
(medium polarizations); and w;,,=|E,,—E|/# are the angular
frequencies with respect to the optical transitions /—m, with
E,,, being the energies of the quantum states / and m. The
parameters ¢, describe the particular configuration of the
three-level system as follows: ¢;,,=1 is for a A-type configu-
ration, ¢;,=-1 is for a V-type configuration, and g3=1,
qio=—1, and ¢g,3=1 stay for a cascade-type configuration
(for the numbering of the quantum states, see Fig. 1). In
deriving Egs. (2) it was assumed that only the 1-2 and 1-3
transitions are allowed in the electric-dipole approximation
(d»3=0). Note also that for each type of system particular
initial conditions must be considered.

In Egs. (2) and in what follows, the normalization of the
variables that has been adopted is

Q{E,D,B,H} = {Ez’DpBy’Hy}dl:‘S/ﬁ’
O = plmNaZd%S'/ﬁ’

B=dy/ds, (3)

where p;,, are the density matrix elements, d,,, is the effective
dipole coupling coefficient (electric-dipole moment) of the
[-m optical transition, and N, is the density of polarizable
atoms. For a closed quantum system, which is the case that
we have considered, the probability conservation condition
P11+ pn+py3=1 applies. In this case Egs. (2) can be slightly
simplified by excluding one equation of the level popula-
tions. Also, for completeness, the constitutive relations have
to be added. When only the 1-2 and the 1-3 transitions are
allowed in the electric-dipole approximation and for non-
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magnetic materials, the constitutive expressions read as fol-
lows:

Qp=(Qp +Re[o3 + Boy,]) e, (4)

Qp=Qppu, (5)

where g; and u, are the electric and magnetic constants,
respectively. Equations (1) and (2) and the constitutive rela-
tions (4) and (5) are investigated along this article with a
FDTD scheme that is detailed below.

Yee’s discretization (staggered in space and in time) [26]
for the electric and magnetic fields has been used in our
modeling. For the termination of the spatial grid and for the
reduction of back reflection of light, perfectly matched layers
[7,27] have been introduced on both sides of the spatial grid.
In our simulation the reflection from the boundaries does not
exceed 0.001%. The density matrix elements are calculated
in the space points at which electric components of the field
are defined. The algorithm for the solution of the Maxwell
and the density matrix equations (1) and (2) can be described
as follows. At the time interval (¢,7+dt), the Maxwell equa-
tions (1) are solved by the FDTD technique [7] and the value
of the electric displacement j(x,1+dr) is obtained at the
end of this time interval. Then, at time 7€ (¢,1+dt), the evo-
lution of the electric displacement is linearly approximated
in time at each spatial point:

Qpx,7) = Qp(x,0) + [Qplx,t + dt) = Qpx,0)]7de.  (6)

Therefore, by substitution of Eq. (6) into Eq. (4), the density
matrix equations (2) are reduced to ordinary differential
equations (at each spatial point) with time-dependent coeffi-
cients. Such equations can be solved by any method for or-
dinary differential equations. We solve them by using a
Runge-Kutta-Fehlberg method of seven-eight orders with
time step control, which is used for tracking more precisely
any sharp variations in the density matrix elements. The gen-
eral features of the results reported below are also verified by
a FDTD predictor-corrector method [8].

In this paper, in order to be consistent with previous work
[13,14], we will consider the propagation of single- or two-
color phase-matched HS pulses; i.e., we will assume that the
input pulse has one or two spectral components at central
frequencies w; and/or w, with initial amplitudes E,, and/or
E,,, respectively. The wave form of such pulses at the input
point (x=0) can be described as follows:

E.(x=0,1)= E,, (1) + Ew2(t)

cos[wy(r = 19)]
“2cosh[ (1 - 19)/1,]

(7

where 7,=2 arccosh( \e"2)tp is the full width at half maximum
(FWHM) of the pulse intensity envelope and ¢ is the time at
which the pulse envelope maximum enters the grid. ¢ is the
initial phase difference between the E,, and E,, pulses.
Two types of three-level A systems will be considered: (i)
with arbitrary ratio of optical transition frequencies
w3/ w1, # 3 and (i) with the particular ratio of optical tran-

_cos[o(t=19) + ¢]
~ Y cosh[ (- 10)/1,]
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sition frequencies w3/ w,=3. As commented above, pulse
propagation in these A systems will be examined for two
cases of tuning of the central pulse frequencies: (i) the fre-
quencies of the E,, and E,, pulses being in resonance with
the optical transitions—i.e., w;=w;3 and w,=w;,—and (ii)
the frequencies of the E,, and E,, pulses being tuned far
from any one-photon resonance of the system (w; # w;3(12)
and w, # w;3(13)). For the calculations presented below, the
following values of the parameters have been adopted: N,
=2%10* m™ and d|5=d,=4.2%X 107% Cm. Since we con-
sider femtosecond pulses, the relaxation of the density matrix
elements is neglected: y;=9,=v1,=v13=0, ',=(y+v,)/2,
I'3=v,/2, and I'3=7%,/2 (i.e., I';,,=0). The initial popula-
tions of the excited states and the initial coherences between
all states are set to zero [o,(x,1=0)=0y(x,1=0)=0,(x,1
=0)=05(x,t=0)=03(x,t=0)=0], if it is not indicated oth-
erwise in the text. We assume that the dipole moments of
both optical transitions are equal to each other—i.e., S=1.
Only in Sec. III, where a two-level system is considered, we
use B=0. In what follows, we will use the notation (m,n)
for pulses with m area of the pulse envelope at w; and nm
area of the pulse envelope at w,.

III. TWO-COLOR PULSE PROPAGATION IN A TWO-
LEVEL MEDIUM: PHASE-SENSITIVE SEPARATION
OF PULSES

Recently, it has been shown theoretically that SIT-pulse
propagation in a two-level medium can be modified by the
presence of a second (control) field [28]. Here, we numeri-
cally show that modification of SIT-pulse propagation can be
controlled not only by the amplitude of the control field (in
our case the control field is another pulse), but also by the
initial phase difference ¢ between SIT and control pulses,
provided the frequency of the SIT pulse (w;=3w) is the third
harmonic of the control pulse frequency (w,=w)—i.e.,
w1/ w,=3. We consider the case of initially synchronized
w-3w pulses [see Eq. (7)] with a pulse width such as 7,
=10 fs, central wavelengths A;,=0.8 um and A,=2.4 um,
and envelope area of 27. Propagation of pulses in a two-
level system is modeled by Egs. (1) and (2) with 8=0; in this
case, only the dynamics of the 1-3 transition (see Fig. 1) is
affected by pulse propagation. The resonance frequency of
the transition is taken as w;3=3w.

In our simulations we observe that a single-color 3w pulse
propagates resonantly in the two-level medium without sub-
stantial changes of its wave form, as is expected [8,9,21,22].
The presence of the control w pulse, however, modifies the
propagation of the 3w pulse. Due to the SIT effect [22], the
3w resonant pulse propagates with smaller group velocity
than the w pulse (the frequency of which is far from the w3
resonance). For the parameters adopted in our calculation,
the group velocity of the 3w pulse is approximately 10% of
the velocity of light in vacuum. Therefore, although being
initially synchronized, the w and 3w pulses will separate
from each other during propagation. Importantly, however, in
the region where the pulses overlap—i.e., for short propaga-
tion distances—the pulses still strongly interact through
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FIG. 2. (Color online) Phase-sensitive separation of (2,27r)
pulse (left column) and (47,4 ) pulse (right column) in a two-level
system at propagation distance 220 wm. Dashed (red online) and
solid (black online) lines represent results for initial phase differ-
ence ¢= and ¢=0, respectively.

phase-sensitive four-wave mixing, as is explained in Refs.
[13,14]. In the left column of Fig. 2, the separation of w
-3w pulses with envelope area of 27 is shown for two dif-
ferent values of the initial phase difference, ¢=7 and ¢=0.
One can see that the separation of the pulses at x=220 um is
sensitive to the initial phase difference ¢ between the two
incident pulses. We attribute this difference to the phase-
sensitive interaction of w and 3w input pulses in the region
where they overlap and where four-wave mixing of w and
3w pulses produces a phase-sensitive signal at 5w [13,14].
Indeed, the amplitude of four-wave mixing at Sw is smaller
at ¢=m than at ¢=0. The w and 3w pulses are therefore
reshaped by four-wave mixing in such a way that the enve-
lope amplitude of the 3w pulse is larger in the former case
(i.e., for ¢p=m). As a result, after separation, for an initial
phase difference such as ¢=1r, the 3w pulse has the larger
envelope amplitude and, consequently (see Ref. [22]), a
larger group velocity compared to the case of the initial
phase difference ¢=0.

In the right column of Fig. 2, the phase-sensitive separa-
tion of w-3w pulses is presented in a case where the envelope
area of the pulses is equal to 4. Our results can be com-
pared and are complementary to those obtained in Ref. [11].
One can see that the difference between the group velocities
of the 3w pulses (with ¢=m and ¢=0) is larger for a larger
envelope area. This can be understood as follows: with an
increase of the initial pulse amplitudes, the phase-sensitive
difference between the four-wave mixing signals at Sw fre-
quency in the region where the pulses are synchronized be-
comes larger. Therefore, the difference between the resulting
envelope amplitudes after a short propagation and between
the group velocities increases too compared to the case of
initial 27 pulses, as one can see in Fig. 2 (right column). We
hence conclude that the origin of this phase-sensitive sepa-
ration is the same as described above for pulses with 27
envelope areas; namely, it is the phase-sensitive four-wave
mixing effect of synchronized w-3w pulses [13,14].

IV. IN-RESONANCE PULSE PROPAGATION IN A THREE-
LEVEL MEDIUM: PHASE-SENSITIVE FREQUENCY
DOWN-CONVERSION

In this section, we consider the propagation of pulses that
belong to the visible or the near-infrared spectral range and
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the central frequencies of which are in resonance with the
optical transitions w;=w;3 and w,=w;, of a three-level
A-system [see Fig. 1(a)]. We will assume that the duration of
the pulses is 7,=80 fs. The spectral width of such pulses is
much smaller than the separation in frequency of the two
optical transitions, and therefore any propagation effect
caused by the interaction of the pulses with the adjacent tran-
sition is strongly reduced. On the other hand, since the tem-
poral width is much shorter than the relaxation times of the
medium, the relaxation of the density matrix elements can be
omitted; i.e., we deal with the transitory coherent interac-
tions. Especially, we will consider the propagation of pulses
the initial envelope area of which is equal to or a multiple of
2. The angular frequency of the 1-3 transition is taken as
013=2.36X10" s7! (which corresponds to a wavelength
such as N;3=0.8 um). We investigate the propagation of
single-color and two-color pulses and focus our study on two
particular cases: first, the ratio of the transition frequencies
does not meet a special relation, and then we consider the
interesting case where the relation w3/ w,=3 is met.

A. Single-color (277,0) and (0,277) pulses

Let us consider the propagation of single-color (27r,0)
and (0,27) pulses which frequency is in resonance with ei-
ther the 1-3 or the 1-2 optical transition [see Fig. 1(a)].

We show first the results of the propagation of a (27,0)
pulse (i.e., a pulse with an area of 27 in resonance with the
1-3 transition) in the three-level A medium as is simulated
by the theory presented in Sec. II. We consider to begin a
three-level A system which optical transitions satisfy
w2/ w;3=0.7. The wavelengths of resonant pulses are in this
case A\;=0.8 um and A,=1.14 um. Since the RWA has not
been invoked in the theory, frequencies of the system that are
far from the material resonances are properly taken into con-
sideration. In these conditions, we find that the presence of a
third level has a crucial effect on the propagation of the
single-color (27,0) pulse. In Fig. 3 we show an almost total
conversion of the energy from the pulse at w;=w3 (v,
pulse) into a pulse with w,=w;, (w, pulse), at a propagation
distance such as x=46 um in this case. Therefore, the w;
pulse is converted into a w, pulse with approximately hyper-
bolic secant shape. We find that the envelope area of the
output w, pulse is =97% of the area of the input w; pulse.
We attribute this pulse frequency-conversion effect to the
Raman process which induces absorption at w; and emission
at w,. We have verified this conclusion by simulating Eqs.
(1) and (2) with pulse frequencies detuned from the one-
photon resonance and keeping the two-photon resonance
condition.

The conversion process can be enhanced by an additional
input pulse at w,. The addition of an input wave at w, with
small amplitude decreases the distance at which the switch-
ing takes place. This is shown in the inset in Fig. 3. This
decrease is caused by the stimulated emission in the 1-2 tran-
sition and by the stimulated Raman process in the 3-1-2 tran-
sitions in the presence of the w, pulse.

We now consider a three-level A-type system with the
particular ratio of optical transition frequencies w;3/ w;,=3.
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FIG. 3. (Color online) Frequency down-conversion effect ob-
served during propagation of a (27r,0) pulse in a three-level system
with @,/ w3=0.7: optical spectra (a), (c) and time evolution of the
electric field (b), (d) of the pulse before (left column) and after
(right column) switching into a w, pulse. Distribution of population
of level 2 (e) after the pulse has passed throughout the system.
Crosses in (e) denote the distribution of population of level 1. In the
inset in (e) the solid line indicates the distribution of population of
level 2 after (27,0) pulse propagation (w; pulse propagation in the
absence of w, pulse) and the dashed line indicates the distribution
of population of level 2 after (27,¢) pulse propagation—i.e., w,
pulse propagation in the presence of a weak w, pulse with e=27
% 107 being the area of the additional weak w, pulse.

The wavelengths of two resonant pulses are A;=0.8 um and
N,=2.4 um. In this case (w;3/w,=3), the propagation ef-
fects of a (277,0) pulse (with frequency w,=w;3=3w) are
similar as those observed above for an arbitrary ratio of op-
tical transition frequencies. Therefore, frequency down-
conversion of the pulse will take place at some propagation
distance; see Fig. 4(a). The difference in the present case is
that the conversion from w;=3w to w,=w takes place at a
longer distance (x=193 wm) than in the case where w3
# 3w, (x=46 um), as shown in Figs. 4(a) and 3(e), respec-
tively. We think that this retardation is due to the fact that in
the case w;3=3w;, there is a larger difference in frequency
between the transitions 3-1 and 1-2 with respect to the case
that we have considered with w;3# 3w,. The retardation
may also benefit from several higher-order processes that
occur in this particular level configuration (e.g., two- and
three-photon absorption in the 3-1 and 3-2 transitions),
which may slightly inhibit the frequency conversion process.
It is also worth noting that the envelope area of the output
pulse with w,=w is in this case approximately 71% of the
area of the input pulse with w;=3w for the parameters that
we have considered in the simulation. Therefore, we find that
the amplitude of the converted pulse is smaller than in the
previous case where w3 # 3w,.

In Sec. IIT we have shown that propagation of a pulse with
frequency w;=3w being in resonance with the transition of a
two-level system (w;3=3w) can be modified by an additional
pulse with frequency w,=w and that this effect is sensitive to
the initial relative phase between the two pulses. We now
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x[pm]

FIG. 4. (Color online) Distributions of the population of level 2
in a three-level system with w3/ w,=3 after the propagation of a
(27,0) 3w pulse (a) and (27,e) 3w-w pulses (b) with =27
X 107* being the area of additional weak pulse at frequency w,
=w. In (b) the dashed line (red online) represents the result for the
initial difference between the pulse phases ¢=m and solid line
(black online) for the case ¢=0.

aim to investigate the possibilities of phase control of the
frequency down-conversion phenomenon by manipulating
the initial relative phase between a w; pulse (with pulse area
of 27) and an additional weak w, pulse (with small pulse
area ¢<2m) in the three-level A medium with w;3=3ws;
i.e., we consider propagation of (277, ¢) pulses. We find that
the distance at which the conversion takes place depends on
the initial phase difference between the input w; and the
weak w, pulse, as is shown in Fig. 4(b). For the parameters
used in this simulation the difference in the switching dis-
tance is approximately 200 nm. Finally, we have also found
that the distance at which the switching [frequency down-
conversion of the (27,¢) pulse] occurs decreases with an
increase of the amplitude & of the weak w, pulse, in both the
cases w3/ w1,=3 and w3/ w1, # 3.

We next report on the results of the study of the propaga-
tion of a (0,27) pulse (i.e., a pulse with an area of 27 in
resonance with the 1-2 transition) in a three-level A system
with distinct configurations. Figure 5 shows the dynamics of
the electric field, excited-level populations, and real parts of
the coherences for three separate positions (x=55, 110, and
165 wm) in the propagation of the pulse. In the left column
of Fig. 5, we show that propagation of a (0,27) pulse when
w3/ wy, # 3 is almost wave form preserving. We also show
in the left column of Fig. 5 that a (0,27) pulse induces
transient changes and oscillations in all medium polariza-
tions p;; and all level populations. In our simulations these
transient changes are rather small, because the initial popu-
lations of excited levels (levels 1 and 2) are equal to zero and
the frequency w, of the incident pulse is far from resonance
of the 1-2 transition. After the pulse propagation, all medium
variables (polarizations and level populations) return to their
initial values for w3/ w;,# 3 [see Figs. 5(b)-5(f)].
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In the right column of Fig. 5, we show the results of the
propagation of a (0,27) pulse when w3/ ®;,=3. Due to the
particular relation between the two transitions of the system
in this case, the propagation of a (0,27) pulse with fre-
quency w,=w, is affected by nonlinear multiphoton pro-
cesses, such as hyper-Raman [30] and also two- and three-
photon absorption in the 3-2 and 3-1 transitions, respectively.
These processes lead to a weak decay of the w, pulse. As a
consequence, we find that during propagation the wave form
of a (0,27) pulse is not completely preserved when
w13/ wp=3. On the other hand, we also observe that when
the (0,27r) pulse passes through the medium, it increases the
population of level 2 [see Fig. 5(i)], a phenomenon that will
be further commented on below, and excites all the coher-
ences of the system [see Figs. 5(j)-5(1)] by means of the
multiphoton processes commented on above.

B. Two-color strong pulses

We now consider propagation of two-color HS
(m2ar,n21r) pulses the frequencies of which (w; and w,) are
in resonance with the two frequencies (w;3=w; and w;,
=w,) of the optical transitions of a three-level A-type me-
dium [see Fig. 1(a)]. To emphasize the propagation effects in
this study we consider pulses with a time pulse width as
short as 7,=10 fs, which consequently have a strong inten-
sity. In this case, we find that form-stable propagation does
not exist due to different nonlinear processes that effect pulse
propagation and lead to perturbation of the pulse wave form.
We show next that the modeling considered in our study,
which considers pulse propagation beyond RWA and SVEA
on the basis of the Maxwell and density matrix equations, is
appropriate for a description of such nonlinear processes.
Indeed, one of such processes is Raman scattering, which
affects form-preserving propagation of pulses in the system.
In Fig. 6 the spectrum of two-color (27,2) pulses with
wavelengths A;=0.8 um and A\,=1.14 wm is shown after a
propagation distance in the medium such as 12.5 um. We
clearly observe contributions from Stokes and anti-Stokes
processes, which are also shown schematically in the insets.
The pulse with the larger frequency (w;) induces an anti-
Stokes field at a higher frequency through the process shown
schematically by solid lines in the right inset of Fig. 6, while
the pulse with the lower frequency (w,) produces Stokes
emission at a lower frequency, as is shown by solid lines in
the inset on the left. Such Raman processes have been ex-
perimentally observed and are reported in Ref. [29]. It is
worth noting that the Stokes field produced by the pulse with
the lower frequency (w,) cannot be present for frequencies
w1, < w3/2, which is the case in the particular case of our
study where wj,=w;3/3.

Another process that has a strong effect on the two-color
pulse propagation is stimulated emission. In Fig. 7 we con-
sider the dynamics of the excited-level populations [1 and 2
in Fig. 1(a)] at a given spatial point in the case of the propa-
gation of (m2r,n27) resonant pulses in a w;3=3w,, three-
level A-type configuration, also illustrating the single-color
cases. The more general case with w;;# 3w, presents a
similar behavior and has been omitted here. From Fig. 7 we
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see that any incident pulse initiates an increase in the popu-
lation of level 1. If the initial population of level 2 is small,
as is the case in our simulations, population inversion in the
transition 1-2 will be created at the pulse front, which will
result in emission of light at w,, provided some light at this oy
frequency is present to induce stimulated emission [see Figs. §
7(b)=7(d)]. This process together with Raman scattering will o
result in population of level 2, as has been commented on ©
above. The process can be boosted now by the presence of E
both strong waves at w;=w;3 and w,=w;,, as can be ob- 2
served in Figs. 7(c) and 7(d)). We therefore remark on the 2
observation of efficient population transfer from level 3 to &
level 2 in the case of the propagation of two-color pulses. % 10
Since the initial population of level 2 is equal to zero, the (I ' ' '

SIT effect is mainly present in the 1-3 transition, and there-
fore the group velocity of the w, pulse is larger than that of
the w; pulse. Hence, the w, pulse goes ahead of the w; one
during propagation through the three-level A system. This
counterintuitive sequence results in an effective stimulated
Raman adiabatic passage (STIRAP) mechanism [5].

On the other hand, in Fig. 8 the spatial distributions of the
population of level 2 are shown at different ratios of ampli-

0 3.75x10"
frequency [ Hz ]

FIG. 6. (Color online) Spectrum in logarithmic scale of the Ra-
man scattering of two-color (27,27) resonant pulses in a three-
level A system with w,=0.7w;3 at a propagation distance such as
12.5 pm. Solid lines in the insets show schematically the processes
leading to the generation of the lowest- and highest-frequency Ra-
man contributions in this case.
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FIG. 7. (Color online) Dynamics of the populations of levels 1
(black solid line) and 2 (blue dashed line) induced by single-color
(a), (b) and two-color (c), (d) resonant pulses at the propagation
distances 145 um (a), (b), 25 um (c), and 72.5 um (d), in a three-
level A system with w3=3w3.

tudes (m2m,n2m) and for two values of the initial phase
difference of the input w;=3w, resonant pulses, always with
w3=3w;,. From Fig. 8 it follows that the initial phase dif-
ference between the two pulses has a strong influence on the
spatial distribution of the coherent population transfer effect.
The maxima of the population distributions show the space
region at which there is efficient frequency down-conversion
(transfer of energy from the w; pulse into the w, pulse,
which implies coherent population transfer from level 3 to
level 2). We see that the position of these regions (peaks in
the population of level 2) is governed by the relative ampli-
tudes and also by the relative phase between the pulses. In-

1
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FIG. 8. (Color online) Phase sensitivity of the spatial distribu-
tion of the population of level 2 after propagation through the three-
level A system with w3=3w;, of two-color w;=3w, resonant
(m27,n2m) pulses with initial phase difference ¢=m (blue dashed
lines) and ¢=0 (black solid lines). The zero and corresponding
abrupt changes in p,, on the left and right sides define the free
space before and after the medium on the spatial grid used in the
calculations.
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terestingly, it is clear that at fixed pulse amplitudes the popu-
lation transfer can be controlled solely by the relative phase
between the pulses. Calculations at different values of the
relaxation rates y; and 7, in the range [0,1 ps~!] have been
also performed in order to test the effect of decoherence in
the system, and it has been found that the phase-sensitive
population transfer effect remains. However, we find that the
maximum value of the resulting population in level 2 de-
creases with increasing the value of the relaxation rates 7,
and y,. As is expected, we have not found such phase-
sensitive population transfer in other three-level A configu-
rations with ratios different from w3/ w,=3.

V. FAR-FROM-RESONANCE TWO-COLOR PULSE
PROPAGATION: PHASE SENSITIVITY OF FOUR-WAVE
MIXING

In this section, two-color w-3w initially synchronized
pulses in the infrared region with spectral components such
as N3,=3.0 um and A,=9.0 um are considered. Since the
optical transition frequencies belong to the infrared region,
the initial populations of levels have been defined by the
Boltzmann distribution at room temperature. Initial coher-
ences between all states are equal to zero. We assume here
that both spectral components of the incident two-color
pulses are far from any resonance of the three-level A sys-
tem. In this case, the ratio of the optical transition frequen-
cies, é=w;,/ w3, is taken as one of the control parameters,
and the pulse temporal width is assumed to be 7,=300 fs.
We will investigate phase-sensitive four-wave mixing phe-
nomena and the existence of a point at which this sensitivity
is suppressed by extending previous results reported by some
of us [13,14] to the case of three-level A systems.

Four-wave mixing of a w-3w pulse produces emission at
Sw frequency. In a two-level system, the efficiency of four-
wave mixing for different values of the relative phase (¢)
between the w and 3w components of the incident pulse is
related to the following parameter [14]:

M3 = (a)13/w)2. (8)

In our notation, the parameter 7,5 indicates how far from the
w3 resonance the frequency components of the incident
pulse are. For short propagation distances [14], with 73
<5 the amplitude of the Sw component is larger for ¢=r,
while with 7;3>5 the amplitude of the 5w component is
larger for ¢=0. In the two-level approximation, ac Stark
frequency shifts of the energy levels induced by the w and
3w spectral components compensate each other at 73=5.
The important result reported in Ref. [14] concludes that at
this point—i.e., at 7;3=5—the phase sensitivity of the Sw
four-wave mixing component disappears.

In a three-level A system a similar parameter can be in-
troduced for the adjacent (1-2) transition as follows:

M= (/@) = 73 9)

Of course, simultaneous compensation of energy level shifts
(induced by the ac Stark effect) on both transitions of the
three-level A system is not feasible. However, when level 2
is not close to the upper level 1 [see Fig. 1(a)], one can
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FIG. 9. (Color online) Spatial dependence of the maximum of
the amplitude at Sw in the propagation of two-color w-3w initially
synchronized HS pulses. The initial area of the pulses is equal to
1.97. The ratio of the optical transition frequencies of the three-
level system is é=w;,/ w13=0.7. The results are shown for different
values of 7,3 as indicated. Red lines with circles are for ¢=r,
while black lines with crosses are for ¢=0. Cancellation of phase-
sensitive four-wave mixing takes place in this case at 73=5.4.

expect that there is a frequency w at which the phase-
sensitive character of the four-wave mixing process can also
be suppressed in this case. We have indeed been able to find
this cancellation effect in the three-level system for a value
of 7,3 slightly higher than 5. This can be explained as fol-
lows: for 73>5, the 1-3 transition gives preference for a
larger amplitude of the four-wave mixing signal at 5w for
zero initial phase difference (¢=0). Because in a three-level
A system the ratio §€<<1 always holds, one can always have
the relation 7;,<<5. In such a case, the 1-2 transition will
give preference for a larger amplitude of the 5w four-wave
mixing component for ¢=1. Therefore, when 7,3>5 and
712 <5, the two optical transitions of the three-level system
will compete with each other in the four-wave mixing pro-
cess and there will be a value of #7,, (or equivalently a value
of &) at which the changes in the amplitude of the wave-
mixing signal at Sw will cancel each other. This is shown in
Figs. 9 and 10.

In Fig. 9, the spatial dependences of the spectral ampli-
tude of the four-wave mixing signal at Sw are presented for

1~
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FIG. 10. Curve of phase-insensitive four-wave mixing in a
three-level A system, plotted in the plane & ;3.
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the case of a three-level A system with the particular value of
£=0.7 and for different values of the parameter 7,5 (i.e., for
different values of the frequencies of the w-3w two-color
pulse). From Fig. 9 one can see that the amplitude of the
mixing signal at Sw is controlled by the phase difference
between the spectral components of the incident pulse.
Moreover, it is evident that there is a value of 7,5 (or equiva-
lently a frequency w) at which the phase sensitivity of the
four-wave mixing process disappears. For the particular case
of £€=0.7, the point at which the phase-sensitivity effect can-
cels is 7;3=5.4 [see Fig. 9(c)]. In Fig. 9, only the curves for
phase differences ¢=0 and ¢=1r are presented, although we
have verified that the same phase-sensitivity cancellation re-
mains for any value of the phase difference. We have calcu-
lated the phase-sensitivity cancellation point for other & val-
ues and illustrate the results in Fig. 10, where the curve of
phase-insensitive four-wave mixing is represented in the
plane (7,3, £). It is worth noting that for small values of £ the
value of 73 has to be increased considerably in order to
maintain 7;,<<5. In such a case, since the 3w spectral com-
ponent approaches the resonant frequency (w;3) of the 1-3
transition, the phase-sensitive effect created by the 1-3 tran-
sition can no be longer compensated by the weaker effect
created in the 1-2 transition. Also, in a more general case, the
conditions for phase-insensitive four-wave mixing would de-
pend on other parameters too, such as the relative strength
(B) of the optical transitions or the relaxation rates (7;;) of
the density matrix elements. The additional effects of these
parameters are presently under investigation.

VI. SUMMARY AND CONCLUSIONS

In this paper we have introduced a FDTD and Runge-
Kutta method for the solution of the Maxwell and density
matrix equations of a three-level system beyond the RWA
and SVEA in one spatial dimension. We have investigated
coherent effects in the propagation of ultrashort pulses in
two-level and three-level A systems. We have considered
single pulses and also initially synchronized two-frequency
pulses. It has been shown that the presented model is helpful
for investigations of a wide range of nonlinear phenomena in
two- and three-level systems. Since the RWA is not invoked
in the theory, investigations of resonant and nonresonant
phenomena can be performed.

It has been found that in a two-level medium, the propa-
gation of two-color w-3w pulses depends on their initial
phase difference. This phase-sensitivity effect is linked to the
phase-sensitive phenomena observed in the four-wave mix-
ing of ultrashort w-3w pulses in the region where they over-
lap, as was reported before in [13,14]. Such phase-sensitive
phenomena might be used for optimal control of ultrashort
pulse propagation (for instance, for precise tuning of the 3w
pulse retardation time) in a resonant two-level medium.
Moreover, the phase-sensitive pulse-separation phenomena
reported here might be also applied as a control mechanism
for the generation of single-cycle pulses at 3w frequency, by
exploring the scheme of m2 7 pulse separation into a chain of
m pulses with 27 areas, as was proposed in Ref. [10].

Coherent propagation of femtosecond single- and two-
color pulses has been investigated in the case where the pulse
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frequencies are in resonance with the optical transitions of a
three-level A-type system. It has been found that in a three-
level A system with arbitrary ratio of optical transition fre-
quencies, the propagation of single-color (27r,0) pulses does
not exhibit preservation of the wave form. Such pulses un-
dergo frequency down-conversion [conversion from a
(27,0) pulse into a (0,27) one] at some propagation dis-
tance. In the small space domain where the conversion takes
place, the population is efficiently transferred from the
ground level 3 into the level 2 during the frequency down-
conversion process. In this context, we have also studied the
particular case where w3/ w;,=3. Although it is difficult to
find a quantum system with a particular ratio of optical tran-
sition frequencies such as w3/ w,=3, the phenomena that
we investigate could still be accomplished in some measure
by applying appropriate external fields to the system. We find
that when w3/ w;»,=3 is met, frequency down-conversion of
a (21, €) pulse is sensitive to the initial relative phase when
an initially synchronized pulse with weak amplitude in reso-
nance with the adjacent 1-2 transition is present. On the other
hand, we have studied the propagation of single-color
(0,27) pulses, the frequency of which is in resonance with a
transition that is uncoupled from the ground state, in the
electric-dipole approximation sense, and have obtained form-
stable propagation in the general case. In the particular case
where w3/ w,=3 is met, propagation of (0,27) pulses is
perturbed by multiphoton resonant processes, which populate
excited states and induce coherences in the three-level A
system.

We have observed that frequency down-conversion is en-
hanced in the case of two-color (m2,n27) resonant pulse
propagation in the three-level A-type system, due to the pres-
ence of a comparably strong pulse at the frequency of the
adjacent 1-2 transition. Moreover, frequency down-
conversion in the three-level A system with the particular
ratio of optical transition frequencies, w3/ w,=3, is gov-
erned by the relative phase of the w-3w (m2,n2) reso-
nantly propagating pulses. Namely, the position of the re-
gions where there is effective population transfer to level 2
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(i.e., effective frequency down-conversion) depends on the
initial phase difference between the pulses. Phase-sensitive
manipulation of population transfer could be useful, for in-
stance, in information processing [3,4].

Finally, the propagation of femtosecond two-color w-3w
initially synchronized hyperbolic-secant pulses in a three-
level A system with an arbitrary ratio between the optical
transition frequencies has been investigated in the case where
the pulse frequencies are far from any one-photon resonance
of the system. It has been shown that in a three-level A
medium, the process of four-wave mixing of phase- and
amplitude-matched w-3w ultrashort pulses is governed by
the initial phase difference of these pulses, which extends the
previous results found in two-level systems [13,14]. More-
over, it has been shown that coherent Stark nonlinear spec-
troscopy [14] is also feasible in three-level systems, for
which we have shown the conditions for the suppression of
four-wave mixing phase-sensitive phenomena.

In conclusion, we have investigated different coherent
propagation effects in two- and three-level systems, includ-
ing retardation, coherent population transfer, and frequency
down-conversion phenomena, and have shown that the par-
ticular relation w3/ w;,=3 between the transitions involved
in the three-level configuration together with the consider-
ation of resonant two-color w-3w pulses might bring about
many interesting phase-sensitive phenomena. Our investiga-
tion can have potential applications in fields as diverse as
optoelectronics and materials research, in coherent control
schemes, and in biological applications such as spectroscopy
and imaging, among others.
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