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A critical dependence of the quantum interference on the optical Stark spectral shift produced when two-
color laser pulses interact with a two-level medium is observed. The four-wave mixing of two ultrashort
phase-locked �-3� laser pulses propagating coherently in a two-level system depends on the pulses’ relative
phase. The phase dominating the efficiency of the coupling to the anti-Stokes Raman component is found to be
determined by the sign of the total ac Stark shift induced in the system, in such a way that the phase sensitivity
disappears precisely where the ac Stark effect due to both pulses is compensated. A coherent control scheme
based on this phenomenon can be contemplated as the basis for nonlinear optical spectroscopy techniques.
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Phenomena arising from the coherent control of nonlinear
interactions are of importance in fields as diverse as opto-
electronics and materials research, in high harmonic genera-
tion, photoionization or molecular dissociation, and in bio-
logical applications such as spectroscopy and imaging,
among others �1–8�. Optical quantum coherent control is
based on the fact that the phases of interfering transition
amplitudes in light-matter interactions can be controlled
through the optical phase of coherent light sources that drive
the interaction, in such a way that the transition rates to final
states and the dynamics can be modified �1�.

A theoretical investigation on the quantum coherent con-
trol of the optical transient four-wave mixing of two intense
phase-locked femtosecond laser pulses of central angular fre-
quencies � and 3� propagating in a two-level atom �TLA�
was recently reported �9�. It was shown how the nonlinear
��3� coupling to the anti-Stokes Raman field at frequency 5�
depends critically on the initial relative phase � of the propa-
gating pulses. The study was centered to intense pulses in the
visible and ultraviolet spectral regions, with field central fre-
quencies at resonance or lower than the atomic transition.
The phenomena observed in �9� can, however, be scaled to
various laser and material parameters. In the mid-infrared
�MIR� spectral range, in particular, experiments on ultrafast
molecular dynamics are frequently performed by help of
two-color pump-probe nonlinear spectroscopy techniques. In
these studies, nonlinear effects such as stimulated Raman
processes may become important due to the high intensities
inherent to ultrashort pulses, and those nonlinear effects are
often utilized as a complementary tool to gain information
�10�.

In this paper, a critical dependence of the quantum inter-
ference on the optical Stark effect induced in the medium is
observed. To demonstrate the basic physics, I consider the
simplest case of the excitation of a two-level system in the
MIR by �-3� pulses, with pulse durations of 300 fs �spectral
width of �35 cm−1� and peak intensities �108 W/cm2,
which are typically considered in nonlinear spectroscopy set-
ups �10�. I examine the influence of frequency detuning by
considering the field at 3� above resonance with respect to
the atomic transition, in regions where a near Raman reso-
nance is achieved. Under these conditions, I demonstrate that
the quantum interference is governed by the total optical

Stark shift induced in the system. I further observe that the
relative spectral amplitude of the anti-Stokes fields produced
by phase-locked pulses cancels for frequencies that compen-
sate the ac Stark effect. This interference phenomenon might
be considered as the basis for an ultrafast spectroscopy tool
based on coherent control, which I name coherent Stark non-
linear spectroscopy �CSNS� for use later below.

The pulse propagation is modeled by means of the full set
of Maxwell-Bloch equations beyond the rotating-wave ap-
proximation, which allow the resonant as well as the non-
resonant regimes of the system to be considered �1,11�. The
equations are written as

�H

�t
= −

1

�0

�E

�z
,

�E

�t
= −

1

�0

�H

�z
−

Nat�

�0T2
��1 − T2�12�2� ,

��1

�t
= −

1

T2
�1 + �12�2,

��2

�t
= −

1

T2
�2 +

2�

�
E�3 − �12�1,

��3

�t
= −

1

T1
��3 − �30� −

2�

�
E�2, �1�

where H�z , t� and E�z , t� represent the magnetic and electric
fields propagating along the z direction, respectively, �0 and
�0 are the magnetic permeability and electric permittivity of
free space, Nat=2�1024 m−3 is the density of polarizable
atoms, �=4.2�10−29 cm is the effective dipole coupling co-
efficient, T1=T2=1 ps are the excited-state lifetime and
dephasing time, respectively, �1 and �2 are the real and
imaginary components of the polarization, and �12 is the
transition resonance angular frequency of the two-level me-
dium, which is considered in the MIR spectral region �see
Fig. 1�. The population difference is �3, and �30 represents its
initial value. An hyperbolic secant two-color pulse, which
can be expressed as
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is externally injected to the system. E� and E3� represent the
fields with central angular frequencies � and 3�, respec-
tively. The peak input electric field amplitude E0 is chosen
the same for both pulses and results in an intensity of
4.0�108 W/cm2. The duration of the pulses is given by
tp=	p /1.763, with 	p=300 fs being the full width at half
maximum �FWHM� of the pulse intensity envelope. t0 gives
the offset position of the pulse center at t=0, and � is the
relative phase. The propagating system has been resolved
numerically by means of a standard finite difference time
domain method described elsewhere �9,11�.

Figure 2 shows the field spectra at different propagation
lengths in the case where the central angular frequency of the
field E3� is at resonance with the atomic transition
�3�=�12�. The spectrum on the top is for the initial pulses,
and the succeeding plots show the evolution of the spectrum
as the pulses propagate through the medium. Spectral com-

ponents at 5�, 7�, and 9� are produced as a result of the
coupling through the third-order nonlinearity ��3� of the me-
dium. Clearly, the conversion to the anti-Stokes Raman com-
ponent E5� depends on the relative phase between the pulses.
For the parameter values in Fig. 2, the coupling to E5� is
more efficient for �=0 than for �=
. As mentioned above,
these results can be compared to those in Ref. �9�, and they
corroborate the relative phase dependence in the important
case of MIR transitions. It is worth noting that the interfer-
ence effect involves the anti-Stokes spectral Raman compo-
nent 5� only, not the 7� nor the 9�, which remain insensi-
tive to the initial relative phase of the pulses. To lowest
order, this is conceivable since in the coupling to 5� two
primary paths are available, namely 3�+3�−� and 3�+�
+�, while this is not given for 7� and 9�.

I now jump to the study of the frequency detuning of the
fields with respect to the atomic transition, which is the key
part of the present investigation. I will show that there is a
central pulse frequency � at which the relative phase depen-
dence of the coupling to the anti-Stokes Raman component
disappears. I will demonstrate that this can occur because the
different ac Stark shifts produced in the medium by the fields
E� and E3� can be compensated for certain frequencies in the
case that ���12�3�. I will conclude that the optical Stark
shift governs the relative phase dependence and therefore the
quantum interferences in the nonlinear coupling.

Indeed, the ac Stark frequency shift �� produced by a
field of frequency � that is not near resonance with a transi-
tion of frequency �12 can be expressed as �12�
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where � is for ���12 and � is for ���12. In �3�,
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E
 is taken in our study as the peak
amplitude of the pulses, �12 is the frequency of the atomic
transition, and � is the field angular frequency. Note that the
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Eq. �3� becomes
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The last term inside the brackets in Eq. �5� is important far
from resonance, where the rotating wave approximation does
not apply. Clearly, from Eq. �5�, when ���12 we have
���0, and hence the separation in frequency of the atomic
states ��12+��� appears to be less than in the absence of the
field. Contrarily, for ���12, the ac Stark frequency shift is
positive.

In the present case, the main contributions to the ac Stark
effect come from the two components of the propagating
pulses at frequencies � and 3�. Requiring that the combined
ac Stark effect is null

FIG. 1. �Color online� Schematic energy level diagram.
The resonance wavelength is considered in the MIR at
���12�=3000 nm.

FIG. 2. �Color online� Spectra of the total field at different
propagation lengths as indicated. In the case shown, the central
pulse frequency 3� is at resonance with the atomic transition. Each
spectrum is plotted in the logarithmic scale. The relative spectral
amplitude of the anti-Stokes 5� components is shown quantita-
tively in Fig. 3 �case with �=9.0�.
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we obtain �=�12/�5. It is worth noting that the ac Stark
cancellation condition �6� does not depend on the pulse du-
ration and therefore in that sense the result is general. I will
show next that this is the frequency at which the four-wave
mixing relative phase dependence effect is suppressed.

The ac Stark cancellation frequency �=�12/�5 is indeed
observed with accuracy from the numerical simulations. In
Fig. 3, the spectral amplitude of the anti-Stokes 5� compo-
nent is shown for different values of the detuning of the
fields. The spectra corresponding to �=0 is shown by solid
lines, while the spectra for �=
 is represented by the dashed
lines. Clearly, there is a switch in the tendency to dominate
the conversion to the 5� anti-Stokes component. To quantify
this behavior, it is useful to define the parameter
�= ��12/��2, which sets the value of the detuning of the E�

and E3� fields. For ��5, the ac Stark shift due to E� domi-
nates over the shift induced by E3�, and therefore the result-
ing separation of the states due to the combined Stark effect
appears to be larger than in the absence of fields. In this
situation, the coupling to the 5� anti-Stokes field is enhanced
for �=
, as it can be observed in Fig. 3 �plots on the left�.
Contrarily, for ��5, when the ac Stark shift due to E3�

dominates over the shift induced by E�, the coupling to the
5� anti-Stokes Raman component is enhanced for �=0
�plots on the right in Fig. 3�. In this last case the resulting
separation in frequency of the states due to the total Stark
effect is less than in the absence of fields. Furthermore, as
shown in Fig. 3, the switching occurs at �=5, where the total
ac Stark shift is cancelled as expected from Eq. �6�. As al-
ready noticed above, for the numerical simulations to agree
with the theory, the ac Stark effect needs to be considered
beyond the rotating wave approximation �see, e.g., Eq. �33�
in Ref. �12��.

Going forward, I compute the relative spectral amplitude
of the anti-stokes Raman fields, which is defined as

�E5��z� =
E5�

0 �z� − E5�

 �z�

E5�
0 �z� + E5�


 �z�
, �7�

where E5�
0 �z� is the spectral amplitude at the generated anti-

Stokes 5� frequency for �=0 �see Fig. 3�, and E5�

 �z� is the

spectral amplitude at 5� in the case that �=
. Figure 4
shows the results obtained from the numerical simulations

for z=25 �m. Relative differences in amplitudes as

�E5�
�0.5 can readily be produced in the cases considered
in the simulations, and, importantly, the relative phase de-
pendence at �=5.0 remains suppressed for propagation dis-
tances at least as long as z=100 �m. This makes sense since
for the ac Stark-shift cancellation to prevail during propaga-
tion, i.e., for Eq. �6� to be consistent, the peak amplitudes of
E� and E3� must remain equivalent, and therefore they have
to contribute equally to the coupling to E5�, which is indeed
observed at �=5. Contrarily, for ��5 the power at E5� is
mainly due to E�, while for ��5 it is mainly shifted from
E3�. Also important, as noted above, is that the simulations
have been performed near the Raman resonance, since for
large values of the detuning �i.e., for very small or very large
��, the nonlinear coupling to 5� is not efficient.

To conclude, I have shown that considering the coherent
propagation of two-color phase-locked femtosecond pulses
in a two-level medium, with central angular frequencies �
and 3�, one can find an angular frequency � at which the ac
Stark effect produced by the propagating pulses is cancelled.
At this frequency value, which requires the pulse with cen-
tral frequency 3� to be above resonance with respect to the
atomic transition, the phase dependence of the transient four-
wave coupling through the ��3� nonlinear susceptibility of the
medium disappears. This quantum interference effect has not
been reported before. In the present paper, I have considered
atomic frequencies that lie in the MIR spectral region, which
are of the most interest for applications in nonlinear spectros-
copy. It has to be stressed, however, that the phenomena

FIG. 3. �Color online� Spectra for differents values of � showing the anti-Stokes 5� frequency component of the field at the propagation
distance z=25 �m, for �=0 �solid lines� and �=
 �dashed lines�. At �=5 �center plot� the dependence on the relative phase disappears.

FIG. 4. �Color online� Relative spectral amplitude of the anti-
stokes Raman fields �as defined in Eq. �7�� as a function of the
parameter � for z=25 �m. The dashed lines are a guide to the eye.
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reported here can be scaled to several material and pulse
parameters, and therefore straightforward applications can be
conceived for different nonlinear spectroscopy methods
based on coherent control. Indeed, the production of phase-
related �-3� pulses is frequently accomplished by some fre-
quency tripling mechanism or by frequency difference, with
the subsequent variation of the phase of one of the pulses in
order to obtain experimental control over the relative phase.
Although the present analysis has obviously been simplified
by considering two well-isolated levels as a first approach,
the switching effect discussed here is of a fundamental level,
and in that sense it should be observed experimentally in
particular media where the two-level approximation is met.
For instance, some gaseous atoms have well-isolated reso-
nances �as, e.g., rubidium in the visible region�. Also, the
two-level approximation can be used for studying coherent

effects in materials with a broad distribution of transitions,
such as inhomogeneously broadened resonance lines in gases
and in condensed matter, and even for inhomogeneous qua-
sicontinuous energy bands as in semiconductors �13,14�. In
this area, CSNS can be utilized to extract information of
different physical parameters characterizing the material
transitions being probed, by, e.g., measuring the relative
spectral amplitude of the anti-Stokes Raman fields. The ac
Stark mediated coherent control scenario reported in this pa-
per has therefore a broad interest and might be the basis for
further studies in more complex systems.
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