

The future of gamma-ray astronomy

Jürgen Knödlseder IRAP, Toulouse (France)

Comptes Rendus Physique, 2016 Vol. 17, Issue 6, pp. 663-678

Observing gamma rays

History of gamma-ray astronomy

Number of detected sources in red

Achievements Cosmic rays in the Nucleosynthesis in Cosmic accelerators the Universe **Galaxy and beyond** 2013: Proton acceleration in SNR 2011: Crab nebula flares 2014: ⁵⁶Co lines from SN Ia 2010: Fermi bubbles. 2010 First radio galaxy lobe, First nova 2009: First starburst galaxies 2008: Crab pulsar 2005: First binary 2004: First resolved SNR 2009: First millisecond pulsars, First starburst galaxies 2003: ⁶⁰Fe lines from Galaxy 2002: First unidentified TeV source 2000 2000: First SNR 1994: ⁴⁴Ti lines from Cas A 1993: Galactic origin of cosmic rays 1992: Diffuse I MC emission 1992: Mkn 421 1990 1989: Crab nebula 1988: ⁵⁶Co lines from SN II 1984: ²⁶Al line from Galaxy 1981: 25 point-like sources 1980 1978: First blazar 1974: Crab pulsar 1973: GRB, solar deexcitation lines 1972: e⁺e⁻ 511 keV line 1972: Diffuse Galactic emission 1970 1969: Crab pulsar 1962: Cosmic background 1961: 22 photons > 50 MeV 1960 1958: Solar flare GeV TeV MeV

Scientific Challenges

The nature of Dark Matter

- Indicates a major flaw in our understanding of nature
- Proposed solutions include new fundamental particles (WIMPs, axions, etc.)
- Decay products of these particles (or their effects) may be detectable in gamma rays

Scientific Challenges

The nature of Dark Matter

The origin of Cosmic Rays

- Indicates a major flaw in our understanding of nature
- Proposed solutions include new fundamental particles (WIMPs, axions, etc.)
- Decay products of these particles may be detectable in gamma rays

- Unveiling the Galactic PeVatrons
- Impact of low-energy cosmic rays on interstellar chemistry
- Cosmic-ray propagation
- Impact of environment

Scientific Challenges

The nature of Dark Matter

The origin of Cosmic Rays

- Indicates a major flaw in our understanding of nature
- Proposed solutions include new fundamental particles (WIMPs, axions, etc.)
- Decay products of these particles may be detectable in gamma rays

- Unveiling the Galactic PeVatrons
- Impact of low-energy cosmic rays on interstellar chemistry
- Cosmic-ray propagation
- Impact of environment

The physics of Particle Acceleration

- What mechanisms are actually at operation in a given source?
- Insights from variability (time domain astronomy)
- Elusive source classes

Space-based projects

Parameter	Adept	e-ASTROGAM	CALET	DAMPE	GAMMA-400	HARPO	HERD	PANGU
Context	R&D	M5?	ISS	China	Russia	R&D	China	ESA/CAS?
Launch date	-	2029?	launched	launched	~2021	-	>2020	2021?
Energy range (GeV)	0.005-0.2	0.0003–3	0.02-10000	2-10000	0.1-3000	0.003-3	0.1-10000	0.01-5
Ref. energy (GeV)	0.07	0.1	100	100	100	0.1	100	1
$\Delta E/E$	30%	30%	2%	1.5%	1%	10%	1%	30%
$A_{\rm eff}~(\rm cm^2)$	500	1500	t.b.d.	3000	5000	2700	t.b.d.	180
Sensitivity (mCrab)	10	10	1000	100	100	1	10	t.b.d.
Field of view (sr)	t.b.d.	2.5	1.8	2.8	1.2	t.b.d.	t.b.d.	2.2
Angular resolution	1°	1.5°	0.1°	0.1°	0.02°	0.4°	0.1°	0.2°
MDP (10 mCrab)	10%	20%	-	-	-	t.b.d.	-	t.b.d.
Technology	TPC	Si + CsI	$fib. + PbWO_4$	Si + BGO	Si + CsI	TPC	Si + LYSO	Si (fib.) + B

- Detection sensitivities are still poor in the MeV domain
- Considerable potential exists in using modern, **space-proven** highly pixelised semiconductor detectors in a **compact configuration** with a **minimum amount of passive material** to detect gamma rays through Compton and pair creation interactions
- At GeV energies, succeeding to Fermi-LAT will be challenging (Fermi spacecraft weight is 4.3 tons, difficult to build a much bigger detector)
- Area of improvement is angular resolution (i.e point spread function); can be achieved by decreasing density of tracker and increasing spacing between tracker and calorimeter
- Potential to cover both aspects in a single mission

Space-based projects

Parameter	Adept	e-ASTROGAM	CALET	DAMPE	GAMMA-400	HARPO	HERD	PANGU
Context	R&D	M5?	ISS	China	Russia	R&D	China	ESA/CAS?
Launch date	-	2029?	launched	launched	\sim 2021	-	>2020	2021?
Energy range (GeV)	0.005-0.2	0.0003–3	0.02-10000	2-10000	0.1-3000	0.003-3	0.1-10000	0.01-5
Ref. energy (GeV)	0.07	0.1	100	100	100	0.1	100	1
$\Delta E/E$	30%	30%	2%	15%	1%	10%	1	30%
	rese	ртап		зырт	er vo	2 00	a. La ma (
Sensitivity (mcrab	10	10	1000	100	100	1	10	t.b.a.
Field of view (sr)	t.b.d.	2.5	1.8	2.8	1.2	t.b.d.	t.b.d.	2.2
Angular resolution	1°	1.5°	0.1°	0.1°	0.02°	0.4°	0.1°	0.2°
MDP (10 mCrab)	10%	20%	-	-	-	t.b.d.	-	t.b.d.
Technology	TPC	Si + CsI	$fib. + PbWO_4$	Si + BGO	Si + CsI	TPC	Si + LYSO	Si (fib.) + B

- Detection sensitivities are still poor in the MeV domain
- Considerable potential exists in using modern, **space-proven** highly pixelised semiconductor detectors in a **compact configuration** with a **minimum amount of passive material** to detect gamma rays through Compton and pair creation interactions
- At GeV energies, succeeding to Fermi-LAT will be challenging (Fermi spacecraft weight is 4.3 tons, difficult to build a much bigger detector)
- Area of improvement is angular resolution (i.e point spread function); can be achieved by **decreasing density of tracker** and **increasing spacing between tracker and calorimeter**
- Potential to cover both aspects in a single mission

Ground-based projects

Parameter	СТА	HAWC	HISCORE	LHAASO	MACE
Site(s)	t.b.d.	Sierra Negra (Mexico)	Tunka Valley (Russia)	Daocheng (China)	Hanle (India)
Altitude (m)	\sim 2000	4100	675	4300	4270
Latitude	t.b.d.	19°N	51.8°N	29°N	32.8°N
Start of operations	2020	started	t.b.d.	2020?	2016
Lifetime (years)	30	10	t.b.d.	> 10	t.b.d.
Energy range (TeV)	0.02-300	0.1-100	50-10000	0.1-1000	t.b.d.
$\Delta E/E$	10%	50%	10%	20%	t.b.d.
$A_{\rm eff}~({\rm m}^2)$	$3 imes 10^6$	30 000	10 ⁸	8×10^5 (KM2A) 10^6 (WCDA)	t.b.d.
Sensitivity (mCrab)	1	50	100	10	t.b.d.
Field of view	5°-10°	1.8 sr	0.6 sr	1.5 sr	4 °
Angular resolution	0.05°	0.5°	0.1°	0.3°	t.b.d.

- Imaging Air Cherenkov Telescopes (IACTs) have been proven most efficient to study gamma-ray induced atmospheric Cherenkov light (excellent angular resolution, strong background rejection power)
- Drawbacks are low duty cycles (~10%) and narrow fields of view (~5°)
- Performance increase through more telescopes covering a larger area and eventually using SiPM instead of PMTs
- Water Cherenkov Detectors (WCDs) are most successful devices for studying the tails of extended air showers ("tail catcher detectors")
- While modest in angular resolution and background rejection, they have excellent duty cycles and wide field of view (complementary to IACTs)
- Performance increase through larger surface areas, moving the detector to higher altitude, and improving the detector configuration
- Open access observatories

Cherenkov Telescope Array

Cherenkov Telescope Array

Hernanzfest (2017)

Expected performance

Sensitivity gain

- access VHE populations across entire Galaxy
- sample fast variability (AGN, GRB)

FoV > 8°

- measure diffuse emissions
- efficient survey of large fields

Arcmin angular resolution

resolve extended sources (SNR, starbursts)

Broad energy coverage

- < 100 GeV to reach higher redshifts
- > 10 TeV to search for PeVatrons

Key Science

Planned surveys: a deep view of the high-energy Universe

Full galactic plane (1620 h) Deep survey of the Galactic Centre region (825 h) The Large Magellanic Cloud (340 h) One-pi extragalactic survey down to 6 mCrab (500 h)

Hernanzfest (2017)

Large size telescopes

Science drivers

- Lowest energies (< 200 GeV)
- Transient phenomena
- DM, AGN, GRB, pulsars

Characteristics

- Parabolic design
- 23 m diameter
- 370 m² effective mirror area
- 28 m focal length
- 1.5 m mirror facets
- 4.5° field of view
- 0.11° PMT pixels
- active mirror control
- Carbon-fibre arch structure (fast repointing)

Array layout

- South site: 4
- North site: 4

Status

- Some elements prototyped
- First full telescope under construction in La Palma (<u>http://www.lst1.iac.es/webcams.html</u>)

Mid size telescopes

Status

- Telescope prototyped (Berlin-Adlershof)
- Prototype cameras under construction (2 types: NectarCAM & FlashCam)

Science drivers

- Mid energies (100 GeV 10 TeV)
- DM, AGN, SNR, PWN, binaries, starbursts, EBL, IGM

Characteristics

- Modified Davies-Cotton design
- 12 m diameter
- 90 m² effective mirror area
- 1.2 m mirror facets
- 16 m focal length
- 8° field of view
- 0.18° PMT pixels

Array layout

- South site: 25
- North site: 15

Small size telescopes

Characteristics

- Davies-Cotton design
- 4 m diameter
- 8.5 m² effective mirror area
- 5.6 m focal length
- 9° field of view
- 0.24° SiPM pixels

Status

- Prototype telescope built •
- Camera prototype under commissioning

Characteristics

- Schwarzschild-Couder design
- 4.3 m primary diameter
- 1.8 m secondary diameter
- 6 m² effective mirror area
- 2.2 m focal length
- 9.6° field of view
- 0.17° SiPM pixels

Status

- Prototype telescope built
- Camera prototype installed

Characteristics

- Schwarzschild-Couder design ٠
- 4 m primary diameter
- 2 m secondary diameter
- 6 m² effective mirror area
- 2.3 m focal length
- 8.6° field of view
- 0.16° SiPM pixels

Status

- Prototype telescope structure built
- Tested with MAPMT-based CHEC camera

Science drivers

- **Highest energies** (> 5 TeV)
- Galactic science. **PeVatrons**

Array layout

- South site: 70
- North site: -

First CTA light

Calendar

Project Phases

CTA site work

Chile (South)

La Palma (North)

Some other projects

LHAASO

Hiscore

- Non-imaging air-shower Cherenkov light-front sampling
- Up to 100 km² area covered
- Wide field of view (~0.6 sr)
- Extend sensitivity to the PeV regime
- Complemented by IACTs and surface & underground stations for measuring muon component of air showers

- Hybrid detector array
- Gamma ray detectors
 - Large (4 x HAWC) Water Cherenkov detector array (0.1-30 TeV)
 - Electromagnetic particle detectors and muon detectors (30-1000 TeV)

MACE

- 21 m diameter IACT to be installed at Hanle (4270 m a.s.l)
- Design inspired from MAGIC

Sensitivity: past – present – future

Conclusions

Ground-based

- The Cherenkov Telescope Array will expand on all aspects of current IACTs (sensitivity, energy range, angular resolution)
- Will enable
 - WIMP detections from few 100 GeV to few TeV
 - search of **PeVatrons** in the entire Galaxy
 - measurement of **sub-minute variability** in AGN
 - comprehensive population studies of particle accelerators
 - studies of particle acceleration in and particle propagation near individual sources

Space-based

- An instrument covering the MeV GeV energy range has the highest discovery potential (e.g. e-ASTROGAM, ComPair)
- Will enable
 - measurement of **pion-bumps** characteristic of hadronic accelerators in many sources
 - study of the still elusive low-energy cosmic-ray component
 - observation of gamma-ray lines (nucleosynthesis, de-excitation, e⁺e⁻ annihilation)
 - gamma-ray polarisation measurements

