Towards the X-ray and gamma-ray Nuclear Instrumentation for Astrophysics

José-Luis Gálvez

Institut de Ciències de l'Espai (IEEC-CSIC)

2017 June 16th

Detection of hard X/₂-rays based on semiconductor detectors Hard X/gamma-ray imaging detector concepts Experimental set-up and spectral measurements

- Detection of hard X/γ-rays based on semiconductor detectors
- Hard X/gamma-ray imaging detector concepts
- Experimental set-up and spectral measurements

Detection of hard X/₂-rays based on semiconductor detectors Hard X/gamma-ray imaging detector concepts Experimental set-up and spectral measurements

Motivation Radioactive isotopes relevant for γ -ray astronomy

- 2 Detection of hard X/γ-rays based on semiconductor detectors
- 3 Hard X/gamma-ray imaging detector concepts
- Experimental set-up and spectral measurements

Motivation

Detection of hard X/₂-rays based on semiconductor detectors Hard X/gamma-ray imaging detector concepts Experimental set-up and spectral measurements

Motivation

Radioactive isotopes relevant for γ -ray astronomy

[1] J. Isern et. al., A&A 588, A67 (2016)

José-Luis Gálvez Towards the X-ray and gamma-ray Nuclear Instrumentation for Astrophysics

Detection of hard X/₂-rays based on semiconductor detectors Hard X/gamma-ray imaging detector concepts Experimental set-up and spectral measurements

Radioactive isotopes relevant for γ -ray astronomy

Radioactive isotopes relevant for γ -ray astronomy

Isotope	Decay chain	Lifetime	Line energy (keV)
⁵⁶ Ni	⁵⁶ Ni → ⁵⁶ Co	8.8 d	158, 812, 750, 480
oO ₉₉ lain	⁵⁶ Co → ⁵⁶ Fe	111 d	847, 1238
u ⁵⁷ Ni	⁵⁷ Ni → ⁵⁷ Co → ⁵⁷ Fe	(52 h) 390 d	122
	⁴⁴ Ti → ⁴⁴ Sc → ⁴⁴ Ca	89 y (5.4 h)	78, 68, 1157
	²⁶ AI → ²⁶ Mg	1.0 x 10 ⁶ y	1809
⁶⁰ Fe	60 Fe \longrightarrow 60 Co \longrightarrow 60 Ni	2.0 x 10 ⁶ y (7.6 y)	1173, 1332
eg ≥ ⁷ Be	⁷ Be → ⁷ Li	77d	478
Nov Main Na	²² Na → ²² Ne	3.8 у	1275
	\rightarrow e ⁻ capture $\rightarrow \beta^+ \rightarrow$	→ β positrons: 511 keV	

Detection of hard X/γ-rays based on semiconductor detectors Hard X/gamma-ray imaging detector concepts Experimental set-up and spectral measurements

pw can hard-X / γ -rays be detected? haging of hard X/ γ -rays in the keV to MeV range

Detection of hard X/γ-rays based on semiconductor detectors

- 3 Hard X/gamma-ray imaging detector concepts
- Experimental set-up and spectral measurements

Detection of hard X/γ-rays based on semiconductor detectors Hard X/gamma-ray imaging detector concepts Experimental set-up and spectral measurements How can hard-X / γ -rays be detected? Imaging of hard X/ γ -rays in the keV to MeV range

How can hard-X / γ -rays be detected?

γ-ray absorption mechanism: photoelectric absorption;
 Compton scattering; pair (e⁻ - e⁺) creation

Region of interest (~ 100keV to 2MeV) is dominated by the Compton effect

José-Luis Gálvez Towards the X-ray and gamma-ray Nuclear Instrumentation for Astrophysics

Detection of hard X/₂-rays based on semiconductor detectors Hard X/gamma-ray imaging detector concepts Experimental set-up and spectral measurements How can hard-X / $\gamma\text{-rays}$ be detected? Imaging of hard X/ $\gamma\text{-rays}$ in the keV to MeV range

Imaging of hard X/ γ -rays in the keV to MeV range

Detection of hard X/γ-rays based on semiconductor detectors Hard X/gamma-ray imaging detector concepts Experimental set-up and spectral measurements How can hard-X / $\gamma\text{-rays}$ be detected? Imaging of hard X/ $\gamma\text{-rays}$ in the keV to MeV range

Hard X/_γ-rays imaging instruments

Modulation aperture	Compton	Crystal lens
system	telescope	telescope

INTEGRAL/SPI and IBIS (2002-) Swift/BAT (2004-) **e-XTP/WFM** (LOFT heritage) CGRO/COMPTEL (1991-2000) ASTRO-H/SGD (2016) COSI balloon-borne (2016) **e-ASTROGAM** (ESA call for M5) Claire balloon flight (2001) MAX proposal GRI proposal DUAL proposal

Detection of hard X/₂-rays based on semiconductor detectors Hard X/gamma-ray imaging detector concepts Experimental set-up and spectral measurements Challenge Proposal concepts

Outline

- 2 Detection of hard X/γ-rays based on semiconductor detectors
- Hard X/gamma-ray imaging detector concepts
 - 4 Experimental set-up and spectral measurements

Detection of hard X/₂-rays based on semiconductor detectors Hard X/gamma-ray imaging detector concepts Experimental set-up and spectral measurements

Challenge

Challenge Proposal concepts

Reaching E \sim 1MeV with high detection efficiency, keeping a good spatial and energetic resolution.

Optimal trade-off between the efficiency and the energy resolution \Rightarrow GEANT4 Monte-Carlo simulation

Detection of hard X/₂-rays based on semiconductor detectors Hard X/gamma-ray imaging detector concepts Experimental set-up and spectral measurements Challenge Proposal concepts

Proposal concepts

Stack of CdTe pixel/strip detectors as in SGD in Astro-H

• Stack in the PTF (Planar Transfer Field) detector configuration

Detection of hard X/₇-rays based on semiconductor detectors Hard X/gamma-ray imaging detector concepts Experimental set-up and spectral measurements

Challenge Proposal concepts

Proposal concepts

Planar Parallel Field (PPF) configuration

Planar Transverse Field (PTF) configuration

José-Luis Gálvez Towards the X-ray and gamma-ray Nuclear Instrumentation for Astrophysics

Detection of hard X/₂-rays based on semiconductor detectors Hard X/gamma-ray imaging detector concepts Experimental set-up and spectral measurements Challenge Proposal concepts

Hard X/ γ -ray imaging detector implementation(1)

CdTe pixel module with NUCAM read-out chip

CdTe detector characteristics:

- 11 x 11 pixels, electron collection
 12.15 x 12.15 x 2 mm³
 - Pt-Ohmic/CdTe/Pt

NUCAM ASIC performances:

- 128 channel low noise
- On-chip ADC with 12 bits
- output data: channel nº, peak amplitude and collection time

Detection of hard X/₂-rays based on semiconductor detectors Hard X/gamma-ray imaging detector concepts Experimental set-up and spectral measurements Challenge Proposal concepts

Hard X/ γ -ray imaging detector implementation(2)

CdTe pixel module with VATA read-out chip

CdTe detector characteristics:

- 11 x 11 pixels, electron collection
- 12.15 x 12.15 x 2 mm³
- AI-Schottky/CdTe/Pt

VATA ASIC performances:

- 128 channel low noise
- trigger capability
- serial, sparse read-out mode

Detection of hard X/₇-rays based on semiconductor detectors Hard X/gamma-ray imaging detector concepts Experimental set-up and spectral measurements

Challenge Proposal concepts

CdTe detector hybridisation

Wire-bonding of the ASIC inputs

pads and detector HV bias

All mal and a superior an

Wire-bonding of the ASIC

control pads

ICE's Radiation Laboratory Experimental set-up Spectral measurements Summary

Outline

- 2 Detection of hard X/γ-rays based on semiconductor detectors
- 3 Hard X/gamma-ray imaging detector concepts
- Experimental set-up and spectral measurements

Detection of hard X/₂-rays based on semiconductor detectors Hard X/gamma-ray imaging detector concepts Experimental set-up and spectral measurements ICE's Radiation Laboratory Experimental set-up Spectral measurements Summary

ICE's Radiation Laboratory

Detection of hard X/₇-rays based on semiconductor detectors Hard X/gamma-ray imaging detector concepts Experimental set-up and spectral measurements ICE's Radiation Laboratory Experimental set-up Spectral measurements Summary

Experimental set-up

vacuum chamber \Rightarrow controlled atmosphere

inside of vacuum chamber

Detection of hard X/₂-rays based on semiconductor detectors Hard X/gamma-ray imaging detector concepts Experimental set-up and spectral measurements ICE's Radiation Laboratory Experimental set-up Spectral measurements Summary

Detector response @¹³³Ba, -500V, -10°C

Detection of hard X/₂-rays based on semiconductor detectors Hard X/gamma-ray imaging detector concepts Experimental set-up and spectral measurements ICE's Radiation Laboratory Experimental set-up Spectral measurements Summary

Sum spectrum @-500V, -10°C, cathode illumination

Energy resolution

- 7.4keV FWHM @ 356keV (ΔE/E=2.1%)
- 4.7keV FWHM @ 122keV (ΔE/E=3.8%)

ICE's Radiation Laboratory Experimental set-up Spectral measurements Summary

- New instruments with high sensitivity, high detection efficiency and high energy resolution are needed to understand nuclear explosions in the MeV domain.
- Detectors based on semiconductors material like CdTe, Si and Ge with various configurations (pixels, strips) can fulfill the demanding requirements to study in detail high energetic phenomenas.
- Advanced Compton telescopes are promising instruments which may lead future gamma-ray space missions.
- ICE's radiation lab is working. The available equipment allows characterising radiation solid state detectors (i.e. Cd(Zn)Te or Si) in a controllable environment.

ICE's Radiation Laboratory Experimental set-up Spectral measurements Summary

- New instruments with high sensitivity, high detection efficiency and high energy resolution are needed to understand nuclear explosions in the MeV domain.
- Detectors based on semiconductors material like CdTe, Si and Ge with various configurations (pixels, strips) can fulfill the demanding requirements to study in detail high energetic phenomenas.
- Advanced Compton telescopes are promising instruments which may lead future gamma-ray space missions.
- ICE's radiation lab is working. The available equipment allows characterising radiation solid state detectors (i.e. Cd(Zn)Te or Si) in a controllable environment.

ICE's Radiation Laboratory Experimental set-up Spectral measurements Summary

- New instruments with high sensitivity, high detection efficiency and high energy resolution are needed to understand nuclear explosions in the MeV domain.
- Detectors based on semiconductors material like CdTe, Si and Ge with various configurations (pixels, strips) can fulfill the demanding requirements to study in detail high energetic phenomenas.
- Advanced Compton telescopes are promising instruments which may lead future gamma-ray space missions.
- ICE's radiation lab is working. The available equipment allows characterising radiation solid state detectors (i.e. Cd(Zn)Te or Si) in a controllable environment.

ICE's Radiation Laboratory Experimental set-up Spectral measurements Summary

- New instruments with high sensitivity, high detection efficiency and high energy resolution are needed to understand nuclear explosions in the MeV domain.
- Detectors based on semiconductors material like CdTe, Si and Ge with various configurations (pixels, strips) can fulfill the demanding requirements to study in detail high energetic phenomenas.
- Advanced Compton telescopes are promising instruments which may lead future gamma-ray space missions.
- ICE's radiation lab is working. The available equipment allows characterising radiation solid state detectors (i.e. Cd(Zn)Te or Si) in a controllable environment.

Detection of hard X/₇-rays based on semiconductor detectors Hard X/gamma-ray imaging detector concepts Experimental set-up and spectral measurements ICE's Radiation Laboratory Experimental set-up Spectral measurements Summary

THANK YOU FOR YOUR ATTENTION!