Precise study of the supernova reaction ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ in the Dresden Felsenkeller

EuroGENESIS Meeting

Barcelona, 14.06.2013

Daniel Bemmerer (EuroGENESIS AP)

HZDR

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Supernova signal: ⁴⁴Ti in Cassiopeia A supernova remnant

- Decay of radioactive ⁴⁴Ti produces low-energy and high-energy γ-rays
- Half-life of just 59.6 years provides "smoking gun" for a supernova explosion
- Detectable by space-based γ-spectrometers

Daniel Bemmerer | ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ in the Felsenkeller, 14.06.2013 | Slide 2 | http://www.hzdr.de

⁴⁴Ti and core collapse supernovae models

- Yields of ⁴⁴Ti and ⁵⁶Ni are sensitive to the explosion temperature, density and proton-to-neutron ratio Y_e
- ⁴⁴Ti/⁵⁶Ni abundance ratio in Cas A supernova remnant not well reproduced by models
- ⁴⁴Ti is produced close to the mass cut (if one is used)
- Nuclear uncertainties must be excluded:
 - ⁴⁴Ti-producing reaction
 ⁴⁰Ca(α,γ)⁴⁴Ti (results)
 - ⁴⁴Ti-destroying reaction
 ⁴⁴Ti(α,p)⁴⁷V (feasibility study)

Mass profiles of ⁴⁴Ti and ⁵⁶Ni for a 25 M_{\odot} core-collapse supernova model (Hoffman et al. 1995, Diehl et al. 1998)

Mitglied der Helmholtz-Gemeinschaft

Daniel Bemmerer | ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ in the Felsenkeller, 14.06.2013 | Slide 3 | http://www.hzdr.de

Most important resonances in the ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ reaction

Daniel Bemmerer | ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ in the Felsenkeller, 14.06.2013 | Slide 4 | http://www.hzdr.de

DRESDEN

Mitglied der Helmholtz-Gemeinschaft

⁴⁰Ca(α , γ)⁴⁴Ti experiment at HZDR ion beam center

Mitglied der Helmholtz-Gemeinschaft

Daniel Bemmerer | ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ in the Felsenkeller, 14.06.2013 | Slide 5 | http://www.hzdr.de

Setup at 3 MV Tandetron at HZDR

- 3 MV Tandetron provides up to 9 MeV, 3 μ A He⁺⁺ beam.
- Ca(OH)₂ target on Ta backing, directly water cooled.
- Irradiations at 4.5 MeV, three closely spaced resonances there

Mitglied der Helmholtz-Gemeinschaft

Reduced level scheme of ⁴⁴Ti and monitoring of the irradiations

- Three close-by resonances near E_{CM} = 4.1 MeV (E_{α} =4.5 MeV) activated together
- Triplet of resonances is apparent in high-energy γ ray groups of three
- Irradiation monitored using 1083 keV γ ray from decay of first excited state of ⁴⁴Ti

Mitglied der Helmholtz-Gemeinschaft

Daniel Bemmerer | ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ in the Felsenkeller, 14.06.2013 | Slide 7 | http://www.hzdr.de

W. R. Dixon, R. S. Storey, and J. J. Simpson, Can. J. Phys. 58, 1360 (1980).

Mitglied der Helmholtz-Gemeinschaft

Daniel Bemmerer | ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ in the Felsenkeller, 14.06.2013 | Slide 8 | http://www.hzdr.de

Stoichiometric ratio x in Ca(OH)_x

- Two independent methodes have been used to determine the stoichiometric ratio x in Ca(OH)_x:
 - 1. Elastic Recoil detection Analysis (ERDA): $x_{30} = 1.88 \pm 0.21$

Mitglied der Helmholtz-Gemeinschaft

Daniel Bemmerer | ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ in the Felsenkeller, 14.06.2013 | Slide 9 | http://www.hzdr.de

2. From proton induced in-beam γ-

Offline spectra of activated ⁴⁴Ti samples

- Spectra of ⁴⁴Ti samples, measured in a low-background counting facility at earth's surface and in the ultra-low-background facility Felsenkeller Dresden.
- After 68.4 h activation and 7 days counting, an activity of 17.1 ± 0.5 mBq was determined.

Mitglied der Helmholtz-Gemeinschaft

Results: ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ resonance strengths

ωγ [eV]	Reference	Technique
8.3 ± 1.7	Dixon <i>et al.</i> 1980	in-beam γ spectroscopy
8.8 ± 3.0	Nassar <i>et al.</i> 2006	AMS
7.6 ± 1.1	Vockenhuber et al. 2007	recoil detection
9.0 ± 1.2	Robertson et al. 2012	in-beam γ spectroscopy
8.4 ± 0.6	Present work	activation and in- beam γ spectroscopy

Phys. Rev. C, submitted last month

Outlook, ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$

- 4.5 MeV resonances to be studied also by a third technique: AMS measurement in preparation.
- 3.5 MeV resonances: Offline counting still going on
- 2.8 MeV resonance: Second irradiation planned for late 2013.

E _α (keV) E _x (keV)	4497 9215	4510 9227	4523 9239
Present work	0.92 ± 0.20	6.2 ± 0.5	1.32 ± 0.24
Dixon <i>et</i> <i>al.</i> 1980	0.5 ± 0.1	5.8 ± 1.2	2.0 ± 0.4

= 4510 keV	
4523 keV	
4497 keV	
3584 keV	
3618 keV	
3722 keV	
2758 keV	
3654 keV	
3510 keV	
3234 keV	

Mitglied der Helmholtz-Gemeinschaft

Feasibility study on ⁴⁴Ti(α ,p)⁴⁷V reaction with a radioactive ⁴⁴Ti target (1)

- HZDR Ion Beam Center.
- α -beam at 4 7 MeV, Angle = 55°. Current = 1 μ A for 1 2 weeks.
- 1 MBq ⁴⁴Ti implanted into metallic Ta matrix (planned, ISOLDE)
- 25 μ m Al-foil is used to stop α -particles before the detector.
- 100 300 μm PIPS [Partially Implanted Passivated Silicon].

Daniel Bemmerer | ${}^{40}Ca(\alpha,\gamma)^{44}Ti$ in the Felsenkeller, 14.06.2013 | Slide 12 | http://www.hzdr.de

Feasibility study on ⁴⁴Ti(α ,p)⁴⁷V reaction with a radioactive ⁴⁴Ti target (2)

- Safety concern: Sputtering, resulting in contamination
- Target 40 nm, FL = 5.4 x 10¹⁷ ion/cm², NH = 10⁷
- Estimating the sputtering yield for 1 day.
- SRIM and TRIDYN
- ⁴⁴Ti free limit: 100 kBq

Ti %	Sputter yield	Sputtered ⁴⁴ Ti [kBq]
0.05	1.7 x 10 ⁻⁷	0.3
0.2	6.7 x 10⁻ ⁶	1.4
0.5	1.89 x 10⁻⁵	4
1.0	8.80 x 10 ⁻⁵	18
5.0	1.33 x 10 ⁻⁴	27

Mitglied der Helmholtz-Gemeinschaft

Daniel Bemmerer | ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ in the Felsenkeller, 14.06.2013 | Slide 13 | http://www.hzdr.de

Feasibility study on ⁴⁴Ti(α ,p)⁴⁷V reaction with a radioactive ⁴⁴Ti target (3)

• AmCuPu-source and ⁴⁴Ti (83 kBq) are both observed by the 500 μ m Si-detector

• Continuum ends point is at almost 1.7 MeV.

Mitglied der Helmholtz-Gemeinschaft

Daniel Bemmerer | ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ in the Felsenkeller, 14.06.2013 | Slide 14 | http://www.hzdr.de

Feasibility study on ⁴⁴Ti(α ,p)⁴⁷V reaction with a radioactive ⁴⁴Ti target (4)

- Adopting Rauscher calculations, PRC 81, 045807 (2010).
- Gamow Windows are re-calculated for $T_g = 2, 3, 5$.
- Talys code is used. [A. J. Koning, AIP 769, 1154 (2005)]
- Three new points are very probable to measure. Two more are question marks.

Mitglied der Helmholtz-Gemeinschaft

Daniel Bemmerer | ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ in the Felsenkeller, 14.06.2013 | Slide 15 | http://www.hzdr.de

Why not place a used accelerator in Felsenkeller?

- Industrial area (former Felsenkeller brewery)
- Additional space available underground
- Background 3 times worse than LUNA
- Great interest by students, and local citizens
- Synergies with ongoing work at TU Dresden (solar neutrinos) and at HZDR (detector development, nuclear waste transmutation)

12 year old 5MV Pelletron system from York/UK

- Property of an insolvent spin-off of York University
- Magnets, beamline, pumps, fully digital control
- MC-SNICS sputter ion source (C⁻ and H⁻ ions)
- 250 µA upcharge current (double pellet chains)
- → Well-suited for low-energy nuclear astrophysics
- Purchased by HZDR, brought to Dresden

24 July 2012: Loading of components in York

12 July 2012: Still assembled, in York

30 July 2012: Unloading of last component in Dresden

Daniel Bemmerer | ⁴⁰Ca(α,γ)⁴⁴Ti in the Felsenkeller, 14.06.2013 | Slide 17 | http://www.hzdr.de

Work at HZDR on upgrading 5MV Pelletron

- All accelerator and beam line components stored at HZDR since July 2012
- Two MC-SNICS cesium sputter ion sources came with the purchase ¹²C⁻ beam (designed for ¹⁴C): 100 µA
 ¹H⁻ beam: 100 µA
 but no good intensity for noble gases (He⁻, Ne⁻, Ar⁻)

Ongoing projects:

- Terminal ion source
- CAMAC control software
- Windowless gas target

Daniel Bemmerer | ⁴⁰Ca(α,γ)⁴⁴Ti in the Felsenkeller, 14.06.2013 | Slide 18 | http://www.hzdr.de

Radio frequency ion source

- In-house development, based on RF ion source on HZDR 2 MV van de Graaf (running since the late 1970's)
- Electrostatic deflector in order to send the beam to the beam line still to be developed
- RF emitter based on Russian high power valves
- Aim: provide 100 μA positive noble gas ions (He⁺, Ne⁺, Ar⁺)
- Diploma thesis work under way (S. Reinicke)

Mitglied der Helmholtz-Gemeinschaft

Daniel Bemmerer | 40 Ca(α,γ) 44 Ti in the Felsenkeller, 14.06.2013 | Slide 19 | http://www.hzdr.de

Civil construction

Permissions needed:

- Construction permit
- Operation of an ion accelerator

Main safety issues:

- Radioprotection and access
- Suffocating gas (SF₆)
- Fire and evacuation

Status

- Draft project by two private engineering firms (civil and laboratory engineering) completed, January 2013
- Construction not yet funded; discussions with HZDR and local university

Felsenkeller accelerator, science program

Joint effort HZDR (Daniel Bemmerer et al.) – TU Dresden (Kai Zuber et al.)

Solar fusion reactions

- day one project:
- Carbon burning in type la supernova precursors
- Neutron sources for the astrophysical s-process

¹⁴N(p,γ)¹⁵O ¹²C(¹²C,p)²³Na $^{22}Ne(\alpha,n)^{25}Mg$

- Educational tool to teach low-background methods and maintain nuclear competence
- High-energy implantations (Ar⁺)
- Beam time will be available for external users

Mitglied der Helmholtz-Gemeinschaft

Study of ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ in the Dresden Felsenkeller

- ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ resonances at 4.5 MeV studied by inbeam spectroscopy and activation, AMS planned
- ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ resonances at 2.7-3.7 MeV in progress

- 44 Ti(α ,p) 47 V feasibility study underway
- 5 MV high-current Pelletron bought in 2012 and transported to Dresden
- Construction planned but not yet funded
- Machine will be wide open to outside users!

Bonus material

Mitglied der Helmholtz-Gemeinschaft

Daniel Bemmerer | ⁴⁰Ca(α,γ)⁴⁴Ti in the Felsenkeller, 14.06.2013 | Slide 23 | http://www.hzdr.de

⁴⁰Ca(α , γ)⁴⁴Ti experiment at HZDR, setup

Mitglied der Helmholtz-Gemeinschaft

Daniel Bemmerer | ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ in the Felsenkeller, 14.06.2013 | Slide 24 | http://www.hzdr.de

Alpha induced in-beam γ-ray spectra

- Primary and secondary γ rays from the resonance triplet.
- Weak contaminant γ rays from ¹⁹F and ¹⁶O can be seen.

Mitglied der Helmholtz-Gemeinschaft

Target scans before and after the activation

- Proton beam does not create parasitic ⁴⁴Ti.
- Using the E_p = 1842 MeV resonance in the ⁴⁰Ca(p,γ)⁴¹Sc reaction.
- About 48 h activation with a current of 1.5 μA at the water cooled target.

Mitglied der Helmholtz-Gemeinschaft

Daniel Bemmerer | ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ in the Felsenkeller, 14.06.2013 | Slide 26 | http://www.hzdr.de

Background study, in a HPGe detector typical for nuclear astrophysics

<figure>

🖞 🖉 Springer

→ Felsenkeller: Combination of active veto and 47m rock gives a background close to the deep-underground background at 6-8 MeV.

 Explanation: Environmental (α,n) neutrons dominate the deepunderground background.

T. Szücs et al., Eur. Phys. J. A 48, 8 (2012)

Mitglied der Helmholtz-Gemeinschaft

Daniel Bemmerer | ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ in the Felsenkeller, 14.06.2013 | Slide 27 | http://www.hzdr.de

CAMAC and RS232 control

Status quo:

- CAMAC crate controllers with CAMAC DACs+ADCs, accessed via ethernet by NEC proprietary control software
- RS232 controlled devices accessed via industrial PCs and ethernet, also by NEC proprietary control software
- No access to source codes provided

Ongoing work

- B.Sc. thesis ongoing on additional slow control of CAMAC units (J. Wielicki)
- Aim to have an alternative way of controlling beam transmission relevant devices

Mitglied der Helmholtz-Gemeinschaft

Daniel Bemmerer | 40 Ca(α, γ) 44 Ti in the Felsenkeller, 14.06.2013 | Slide 28 | http://www.hzdr.de

High voltage terminal

- 500 W of electrical power available on high voltage terminal (rotating shaft system)
- Gas stripper system will remain on terminal, including two 360 l/s turbomolecular pumps
- Carbon foil stripper system not necessary any more, has been removed

The European community for underground accelerators

 Workshop on "Underground nuclear-reaction experiments for astrophysics and applications", Dresden/Germany April 2010: 30 participants from 8 countries

http://www.hzdr.de/felsenkeller

"Due to the extensive science programme, the long running time per experiment, and the number of researchers involved (...), most participants see it necessary to call for at least two European underground facilities to be realized. (...) A consensus emerged that all facilities should be as open as possible to the community (...). The observational and computational astrophysicists should be included at the earliest stage, helping drive and define the science agenda and creating the added value of multidisciplinarity (...)".

• NuPECC Long Range Plan 2010, released on 8 December 2010:

http://www.nupecc.org

"An immediate, pressing issue is to select and construct the next generation of underground accelerator facilities. Europe was a pioneer in this field, but risks a loss of leadership to new initiatives in the USA. Providing an underground multi-MV accelerator facility is a high priority. There are a number of proposals being developed in Europe and it is vital that construction of one or more facilities starts as soon as possible."

• Follow-up workshops in Gran Sasso (2011), Canfranc/Spain (2012), Gran Sasso (2013)

