Progress and Challenges in Understanding Nuclear Reactions in Astrophysical Environments

Jeff Blackmon, Louisiana State University

There has recently been progress in many areas:

- Hydrogen Burning
- Helium Burning
- Carbon burning and Type Ia
- Novae
- X-ray bursts
- Weak interactions
- Decay properties
- Masses
- p process

But significant challenges remain

8

Globular clusters form from a SSP.

Type Ia SN are standard candles.

The r process occurs in core-collapse supernovae.

The Origin of Cosmic Elements

 $^{12}C(\alpha,\gamma)^{16}O$

• Promising new techniques

®_(

• New measurements of transfer reactions *Oulebsir et al., PRC (2012)*

Experiment	<i>S_{E1}</i> (0.3 MeV) (keV b)	S _{E2} (0.3 MeV) (keV b)	S _{total} (0.3 MeV) (keV b)
This work	100 ± 28	50 ± 19	175_{-62}^{+63}
Brune [25]	101 ± 17	44^{+19}_{-23}	170^{+52}_{-55}
Belhout [8]	80^{+17}_{-16}	_	
Tischauser [26]		53 ± 13	_
Tang [34]	84 ± 21		_
Azuma [35]	79 ± 21		
Hammer [36]	77 ± 17	81 ± 22	183^{+55}_{-54}
Kunz [28]	76 ± 20	85 ± 30	186^{+66}_{-65}
NACRE [5]	79 ± 21	120 ± 60	224^{+97}_{-96}
Ouellet [29]	79 ± 16	36 ± 6	140^{+38}_{-37}
Rotters [31]	95 ± 44	_	
Mean value	83 ± 6	43 ± 5	151^{+27}_{-26}

 New measurements in region of 2.6 MeV resonance constrain sign of interference E1-E2 interference

6:26

Blackmon

Total cross section thru recoils

®_(

62

Direct measurements

- Intense low-energy beam (ISOL)
- Windowless H₂ gas target
- EM recoil separator

8

→ DRAGON: Coincident γ -rays

Indirect approaches – Gammas

®_(

Use Fusion-evaporation or knock-out reactions to populate states in nuclei of interest Detect γ-rays from decay of states and tag with recoiling heavy ions

Indirect approaches – ²⁵Al(p,γ)²⁶Si

 One of most important rates for understanding ²⁶Al in novae

®_(

 Rates depends on properties of low-lying s-wave resonances (2⁺ and 3⁺ states in ²⁶Si)

 ${}^{25}\text{AI}(p,p){}^{25}\text{AI}$ ${}^{27}\text{Si}(p,d){}^{26}\text{Si}$ ${}^{28}\text{Si}(p,t){}^{26}\text{Si}$ ${}^{28}\text{Si}(p,t){}^{26}\text{Si}$ ${}^{28}\text{Si}(p,t){}^{26}\text{Si}$ ${}^{25}\text{AI}(d,n){}^{26}\text{Si}$ ${}^{28}\text{Si}(\alpha,{}^{6}\text{He}){}^{26}\text{Si}$ ${}^{28}\text{Si}(p,t){}^{26}\text{Si}$ ${}^{29}\text{Si}({}^{3}\text{He},{}^{6}\text{He}){}^{26}\text{Si}$

Chen *et al.*, PRC (2012) Chen *et al.*, PRC (2012) Matic *et al.*, PRC (2011) Chipps *et al.*, PRC (2010) Matic *et al.*, PRC (2010) Peplowski *et al.*, PRC (2009) Kwon *et al.*, JKPS (2008) Seweryniak *et al.*, PRC (2007) Bardayan *et al.*, PRC (2007) Parikh *et al.*, PRC (2005) Parpottas *et al.*, PRC (2004) Bardayan *et al.*, PRC (2002) Caggiano *et al.*, PRC (2002)

AstroTown 2012

X-ray bursts

- Nuclear reactions are crucial
 - Thermonuclear events
 - Energy generation (light curve)
 - Abundances (spectra)
 - Evolution of system

8

- (p, γ) and (α ,p) reactions w/ large uncertainties
- Not all reactions are equally important
 - Sensitivity studies help to identify reactions that are likely most important
 - Caveat: Depends on assumptions of astrophysical model

B (5 Be (4

Parikh et al.,(2008)

Array for Nuclear Astrophysics and Structure with Exotic Nuclei: ANASEN

Extended active gas target/detector

- Cylindrical proportional counter (PC) surrounding beam axis
 - − 19 anodes 7-µm diameter carbon fiber → High Gain
- Over 1000 cm² of Si-strip detectors (28) with CsI scintillators
- 600+ channels of ASIC electronics (Wash. U.)

New QQQ

- 1. ΔE in PC \rightarrow particle identification
- 2. Position Si + Position PC $\rightarrow \theta_{lab}$
- 3. Energy Si + $\theta_{lab} \rightarrow E_{cm}$

Entire excitation function simultaneously measured

24x Super-X3

(α, p) with ANASEN

Macon et al.

- 2012 Successful stable beam test:
- Clean identification of channel
- Low background (w/o heavy ion tag!)
- ~100 keV_{cm} energy resolution

- Feb-Mar 2013: ¹⁸Ne(α,p)²¹Na
- Large discrepancies between previous (α ,p), transfer studies, and H.F.
- 56-MeV ¹⁸Ne beam from ³He(¹⁶O,¹⁸Ne)n using RESOLUT
- $\sim 10^4$ ¹⁸Ne/s with 6% purity
- Clean tag of ¹⁸Ne
 - TOF with RF and scintillating foil
- Protons cleanly detected up to $E_p \sim 10 \text{ MeV}$
- But
 - Will not reach most of Gamow window
 - Fusion-evaporation backgorund on CO₂ quenching gas (5%) needs investigation

0 ANASEN at ReA3 Gas stopping and first stage of reacceleration ready for first beams to 1.5 MeV/u Physicists' Spring Break First Beams Road Trip 2013 >108 Wisconsin 107-8 Michigan 106-7 105-6 Milwaukeeo Detroit 104-5 ANASEN now installed at Chicago owa Cleveland 102-4 ReA3 and ready for first beam Ohio Indiana Illinois 0 Columbus Indianapolis ity West Virginia Missouri St. Louis Kentucky Tennessee 0 Arkansas Charlo Sou anta Caro Mississippi Alabama Georgia Jacksonville Louisiana First ANASEN experiments at NSCL starting July 18 ³⁸K+ α \rightarrow ⁴¹Ca+p ?

Heavy elements - where?

- s process
 - \rightarrow Nuclear physics ok except for branch points (nTOF & DANCE)

 $\Delta \log \varepsilon(X)$

0

-1

30

- r process & LEPP
 - Abundances sensitive to uncertain nuclear physics
 - \rightarrow Masses
 - \rightarrow Decay properties
 - → Few reactions (Surman PRC 2009)

r process

- Supernovae?
 - →Hydrodynamics don't match
 - → Explosions?
 - →Many uncertainties

Neutron star mergers?

CS22892 Observed minus Solar System r-process only

50

40

varies

Normalized at Eu

Atomic number

60

 \rightarrow Difficult to produce in early Galaxy

70

Cowan & Sneden, Nature (2006)

80

90

Weak interaction rates

Great improvements in weak rates from theory (nuclear shell model calculations)

See Langanke & Martinez-Pinedo, RMP (2003)

 Gamow-Teller strengths can be determined from charge exchange reactions

8

63

 (p,n) or (n,p) measurements test shell model predictions and effective interactions

- Challenging tests with radioactive nuclei
- Low-Energy Neutron Detector (LENDA) developed for (p,n) measurements with the S800 and radioactive beams.

The r process

Conclusion

• There has been much progress in nuclear physics

- → More realistic theoretical approaches
- → Measurements closer to astrophysical energies
- \rightarrow Many reactions important for novae and the p process
- → First measurements near the r process path

But there remains much to do

- → X-ray bursts
- → Weak rates with radioactive nuclei
- \rightarrow r process masses, half-lives, β n, nuclear structure
- → LEPP

8

• We should be careful with the "lies" we tell

- → The details do matter
- Thanks for your attention!

