Measurements of β-delayed neutron emission around the third r-process peak

ROGER CABALLERO-FOLCH (DFEN –UPC) & S410 experiment collaboration
Barcelona, 14 de juny de 2013
- Astrophysics motivation
- Experimental setup at GSI-FRS facility
- Detection System: SIMBA & BELEN detector
- Ongoing analysis and preliminary results
- Future measurements: BRIKEN
- Summary and outlook
Motivation: nucleosynthesis beyond Fe in the r-process path

Goal: Experimental determination of half lives and neutron branchings of several exotic nuclei in the neutron rich region beyond N=126

Understanding of A=195 peak in the r-process abundance pattern. R-process calculations rely on theoretical predictions (QRPA & FRDM), with remarkable discrepancies and large uncertainties.
Nuclear data for the Pt-peak formation: half-lives

N = 126

Known $t_{1/2}$

C. Domingo-Pardo Priv. Com.
Experiment at GSI – FRS facility. ^{238}U fragmentation beam.

Large intensity (2×10^9 ions/pulse) & high-energy (1 GeV/u) for ^{238}U beams

Separation in flight

$Bp - \Delta E - Bp$

1.6 g/cm2 Be Production target

SIMBA + BELEN

Tracking detectors: particle ID on an event-by-event basis.
SIMBA: Implats & β decays
BELEN: Neutrons

The detection system is based on a stack of SSSD- and DSSD-detectors for measuring ion-implants and beta-decays (SIMBA). Implants-region was surrounded by the 4n neutron detector BELEN.
The Beta dELayEd Neutron (BELEN) detector, based in 3He counters embedded in a polyethylene matrix, located around Silicon IMplantation Beta Absorber (SIMBA).
The detection of the neutron is based on an indirect method: the detection of the products of the reaction of the neutron with 3He counters:

$$^3\text{He} + n \rightarrow ^3\text{H} + ^1\text{H} + 765 \text{ keV}$$

Other reactions:

- $^{10}\text{B} + n \rightarrow ^7\text{Li}^* + ^4\text{He} + 2310 \text{ keV}$
- $^7\text{Li}^* \rightarrow ^7\text{Li} + 480 \text{ keV}$
Tests and experiments with BELEN detector

GSI: S410 “Measurement of β-delayed neutrons around the 3rd r-process peak” C. Domingo-Pardo et al.
PERFORMED, September 2011

GSI: S323 “Beta-decay of very neutron-rich Rh, Pd, Ag nuclei including the r-process waiting point 128Pd”. F. Montes et al.
PERFORMED, September 2011

Z=28, N=50; Z=50, N=82

JYFL (2009, 2010 & 2013)
I162 “Delayed neutron measurements for advanced reactor technologies and astrophysics” JL Tain JYFL. Expected 2013
B.Gomez-Hornillos et al. NIM in progress (2009 exp)

Background measurements at GSI (2010) and LSC Canfranc (2011)
Isomer tagging was used for Z identification and two centred settings on ^{211}Hg and ^{215}Tl were measured during 4.5 days. The implantation area was optimized for Hg and Tl region where good resolution has been obtained.
Good statistics implantation for $^{208-211}$Hg, $^{211-215}$Tl and $^{214-218}$Pb

Implantation pattern

Counts of implanted nuclei

Implants on the high segmented layers of SIMBA detector
Data available and data expected to obtain

Implanted in ROI with enough statistics:

\[^{208-211}\text{Hg}, \, ^{211-215}\text{Tl}, \, ^{214-218}\text{Pb} \]

Other implants of \[^{212-213}\text{Hg}, \, ^{216}\text{Tl}, \, ^{219}\text{Pb}, \, \text{and} \, ^{202-204}\text{Pt}, \]

\[^{203-208}\text{Au}, \, ^{217-221}\text{Bi} \]

Possible evaluation of more nuclei implanted implanted in other layers.

PRELIMINARY results for half lives

209Hg

$T_{1/2} = 59.56 \text{ s (21.91)}$

$t_{1/2} = 36.5 (+/- 7.5) \text{ s}$

211Tl

$T_{1/2} = 73.49 \text{ s (30.25)}$

212Tl

$T_{1/2} = 75.00 \text{ s (33.51)}$

213Tl

$T_{1/2} = 58.30 \text{ s (29.35)}$

G. Benzoni et al. PLB 715 (2012)

t_{1/2} = 88 (+^{46}_{-29}) \text{ s}$

G. Benzoni et al. PLB 715 (2012)

t_{1/2} = 96 (+^{42}_{-38}) \text{ s}
Nuclear data for the Pt-peak formation: half-lives

How theoretical models compare with experiment?

- No experimental information along N=126 region nuclei
- Only possibility is to benchmark the performance of models in the neighbourhood

\[N = 126 \]

→ It seems that nuclear models tend to overestimate the b-decay half-live at N<126 and to underestimate it for N>126...
PRELIMINARY neutron correlations

\[P_n = \frac{1}{\epsilon_n} \frac{N_n \beta}{N \beta} \]

(Efficiency \(\sim 40\%\))
Nuclear data for the Pt-peak formation: b-neutrons

Beta-delayed neutron emission has a twofold impact in the nucleosynthesis:
- It enhances the neutron density of the environment after freeze-out (reactivation).
- It shifts the abundances towards lower masses (Pn: $A \to A-1$, P2n: $A \to A-2$, etc).

Only one experimental value is known: TI-210 !!

- G.Stetter, TID-14880(1961)

$Q_{\beta} - S_n > 0$
Future plans: improved detectors + larger RIB intensities

New campaign for the measurement of β-delayed neutrons at RIKEN:

Large need of b-delayed neutron emission measurements!!!

BRIKEN Campaign:
Opportunities with the BELEN neutron detector at RIKEN
Future plans: improved detectors + larger RIB intensities

2nd BRIKEN WORKSHOP: 30-31 July at RIKEN
Collaborators are welcome to join!!!
Summary and outlook

- Several species of neutron rich heavy nuclei have been produced and identified in the Hg/Tl/Pb region, beyond the shell closure N=126.

- Preliminary **half-lives** have been obtained by implant-beta correlation method with DSSD detectors. They must be rechecked with other numerical methods.

- In order to obtain final results, we need to improve several aspects in our data-analysis (simulation, statistical comparator, spatial correlations, time-correlations, etc).

- The analysis of **β-delayed neutron emission** probabilities is ongoing.

- We plan to measure a large amount of neutron-rich nuclei in a campaign at the RIB facility of RIKEN (Japan).
Universitat Politècnica de Catalunya (UPC)
Institut de Física Corpuscular de València (IFIC)
Helmholtzzentrum für Schwerionenforschung GmbH (GSI)
NSCL, Michigan State University (MSU-USA)
CIEMAT (Madrid)
Universidade de Santigo de Compostela (USC)
Department of Physics, University of Surrey (UK)
CFNUL Universidade de Lisboa (Portugal)
School of Physics & Astronomy, U. Edinburgh (UK)
Department of Physics, University of Liverpool (UK)
STFC, Daresbury Laboratory (UK)
Laboratori Nazionali di Legnaro, INFN (Italy)
Flerov Laboratory, JINR, Dubna (Russia)
CENBG, Université Bordeaux (France)
et al.

Contact: roger.caballero@upc.edu

Work supported by the Spanish Ministry of Economy and Competitivity under contract FPA 2011-28770-C03-03