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Why do we spend our time to study
the effects of rotation on the evolution of the stars?

Well.....because stars....simply rotate
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0.0% Figure 6. Vsini/ V. histogram of all young B stars in our sample with
0 100 ) 200 } 300 400 log gpolar > 4.15. Its polynomial fit is plotted as a thin solid line. The Veq/ Verit
Veini(kme') distribution curve deconvolved from the polynomial fit is plotted as a thick solid
Figure 3. Cumulative distribution functions of projected rotational velocity for line.
field (solid line) and cluster B stars (dotted line).
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Hence we hope that its inclusion will help us to better understand them and the world out there



Astronomy
Astrophysics

A&A 496, 341-853 (2009}
DOL: 10,1051 /0004-6361 200809925
© ESD 2009

The VLT-FLAMES survey of massive stars: constraints on stellar
evolution from the chemical compositions of rapidly rotating
Galactic and Magellanic Cloud B-type stars*-**

L Hunter!, L. Brot®, N. Langer®, D. J. Lennon®, P. L. Dufton!, L. D. Howanh®, R. §. L. Ryans!,
C. Trundle!, C. J. Evans®, A. de Koter®?, and S. J. Smaru!

! Astrophysics Rescarch Centre, School of Mathematics & Physics, The Queen's University of Belfass, Belfast, BTT INN,
Northern Ireland, UK
e-mail: i .nterqub. ac.uk

? Astronomical Institute, Utrecht University, Princesonplein 5. 3584CC, Utrecht, The Netherands

* Space Telescope Science Institste, 3700 San Martin Drive, Baltimore, MD 21218, USA

N Dq'llnmeudﬁvyﬂawdkm University College London. Gower Street, London WC|E 6BT, UK

gy Centre. Roval Ob ¥, Edinburgh. Blackford Hill, Edinburgh, EHS 3HJ, UK

WMMKMWLM‘KWMM 1098 51 Amsterdam, The Netherlands

Received 7 April 2008 | Accepted 5 January 2009

ABSTRACT

iously amalysed the spectra of 135 early B-type stars in the Large Magellanic Cloud (LMC) and found several
groups of stars that have chemical that conflict with the theory of rotational mixing. Here we extend this study to

cm:ms«-uwl—chdnsucnm
for ~50 Galactic and ~ ImswwyﬂlmchmththMC
rotational velocities up 1o ~ 300 km s~' and hence are well suited 1o testing rotational

Chemical compositions are presented for 53 Galactic and 96
SMC stars and compared with the results for the 135 LMC stars
from Paper VII. In order to investigate the role of rotational mix-
ing, a large population of fast rotators is necessary. Our targets
have projected rotational velocities up to ~300 kms™! and hence

1. Hunter et al.: Chemical compositions of B-type stars
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1. Hunter et al.: Chemical compositions of B-type stars
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Fig. 7. Nitrogen abundance (12 + log[N/H]) as a function of projected rotational velocity for the SMC sample of stars. Symbols are equivalent
to those in Fig. 5. The lower panel is equivalent to the upper panel except that upper limits to the nitrogen abundances have been removed.
Evolutionary models are plotted for 12 and 13 M, in panels a) and b).
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Rotation basics

To keep a long story short...

...it was recognized long time ago that it is possible to simulate the
influence of rotation on the structural shape of a star with a 1D code by
adopting three reasonable assumptions:

Since no work must be done to move on an isobar, Zahn (1992)
proposed that both the chemical composition and the angolar
velocity are constant on an isobar as a consequence of a
“vigorous” horizontal mixing.

1) Shellular rotation
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Rotation basics

To keep a long story short...

...it was recognized long time ago that it is possible to simulate the
influence of rotation on the structural shape of a star with a 1D code by
adopting three reasonable assumptions:

Since no work must be done to move on an isobar, Zahn (1992)
proposed that both the chemical composition and the angolar
velocity are constant on an isobar as a consequence of a
“vigorous” horizontal mixing.

1) Shellular rotation

Mass strongly centrally concentrated

2) Roche approximation
M(0)=M

const

3) Equivalent volumes Vy =I f dndo . 17 = i.,-[ ry
\ rer

Two different cases should, in principle, be considered:



Conservative case

if w has cylindrical symmetry it is possible to define a total potential ¥:
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Conservative case

The same surface ¥ is not any more the potential but it is still an isobar:
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Conservative case

The same surface ¥ is not any more the potential but it is still an isobar:
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Rotation: basics

Common assumptions:

Shellular rotation ‘ w and c.c. constant on an isobar

Roche approximation - mass centrally concentrated

: Adoption of the radii of the
Equivalent volumes ‘ e

Angular velocity w:

cylindrical symmetry no restrictions
(admits a potential) (no potential exists)
Advantages p and T constant on an Shellular rotation only

isobar (also kK and €)

p and T vary on an isobar

Disadvantages Solid body rotation (also k and )



... but in practice there is no difference (in a 1D code) between the

cylindrical (conservative) and NON cylindrical (non conservative)

cases, it is just a different interpretation of the physical quantities:
constant versus average values on an isobar...

...but the next step is really the crucial one when talking of
rotation: the treatment of the instabilities that may lead to the
transport of the angular momentum and the mixing of the chemical
composition...

Question: which are the main instabilities in a rotating star?



Rotational instabilities: meridional circulation

gy — max

8y — min

The first one to notice that these two equations
cannot be simultaneously fulfilled in radiative
equilibrium was Von Zeipel (1924)
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Rotational instabilities: meridional circulation

gy — max
Y
Courtesy of G. Meyhet
y-stolen from a presentation)
\\'-,_
gy — min
P

The first one to notice that these two equations
cannot be simultaneously fulfilled in radiative
equilibrium was Von Zeipel (1924)
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Rotational instabilities: meridional circulation

gy — max
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Rotational instabilities: meridional circulation

Expression of the meridional circulation as provided by Maeder & Zahn (1998)
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Angular momentum Angular momentum
transferred outward transferred inward
= \ 3




Rotational instabilities

Are there additional instabilities induced by rotation?

Dynamical Shear

R sie 0P
Restoringforce f=——-—Az-g-AV
Aevdis ) o — Py e 0z
Energy Erestoring :fA 4
b . If the star rotates differentially, the extra energy of
an eddy brought from layer 1 to layer 2 is given by:
£, e O |
turbulent — ( V) —p E A
gop
R= Erestoring__ ¥ 0z bl N2
Eturbulent (6‘}/82) (8V/8Z)2
E ol 6lnpt s Pl N2 (olngloo e ;
! A ievmmg e
R_ Eturbulem l P 6 Vad V alnP /{ ﬁlnr p (NT+NH)(aln 7"/8(&))




Rotational instabilities

Are there additional instabilities induced by rotation?

Dynamical Shear

Z
A
But we are clever...
thermal losses reduce the restoring force...
as well as the Horizontal currents...
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If one also assumes that the eddies have a continuum spectrum of velocities v,

also the idea of a strict criterion vanishes!

In other words there will be always some eddies for which R<1/4,
so that any layer is in principle unstable with respect to the shear
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Rotational instabilities

Are there additional instabilities induced by rotation?

.. just ... Shear

A
But we are clever...
thermal losses reduce the restoring force...
as well as the Horizontal currents...
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Rotational instabilities

In fact, the meridional velocity and the horizontal diffusivity
are strongly correlated: the horizontal turbulence obviously vani-
shes if there is no circulation. At the (

theory, it does not seem unreasonable to assume that D, and U,
are proportional, and thus to state that

(23)

C,; being a parameter of order unity. A more refined prescription

As we have seen, two transport coefficients remain, which cannot
be derived from first principles, namely the horizontal component
of the turbulent viscosity v,, and its companion, the horizontal
diffusivity D). If we wish to proceed, we must content with some
parametrization, whose arbitrariness can fortunately be limited — L
by the few constraints that we have encountered. wm=Ar ("Q(") V2V - “U])'

Referring back to (2.11b), we note that the amplitude of the
differential rotation will remain small only as long as v, is of the ] 3 3 )
order of |2V —aU|, or larger. The simplest way to implement this with A = ( 400mr) : (19)
is to take

Q> between the two Eqs. (17) and (18). This gives for the coef-
ficient of viscosity due to the horizontal turbulence

Forn=1,30r5A = 0.134,0.0927,0.0782 respectively. This




Rotational instabilities

Are there additional instabilities induced by rotation?

Let me just mention the
Solberg-Hoiland dynamical instability
and the
Goldreich-Schubert-Fricke (GSF) secular instability

%
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The SH instability grows only if j decreases outward



Rotational instabilities

Are there additional instabilities induced by rotation?

Let me just mention the
Solberg-Hoiland dynamical instability
and the
Goldreich-Schubert-Fricke (GSF) secular instability
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Rotational instabilities: the transport of the angular momentum

This is an advective — diffusive equation

In order to find a stable solution for this equation (plus the nightmare expression for U),
it is necessary to solve a system of four equations!



Rotational instabilities: the transport of the angular momentum

This is an advective — diffusive equation

In order to find a stable solution for this equation (plus the nightmare expression for U),
it is necessary to solve a system of four equations!

ALTERNATIVELY:

the transport of the angular momentum is often computed by adopting
a pure diffusive equation (e.g. Heger, Langer & Woosley 2000)

oW

i(,, w),, el D)
: B “iaghy

+D
dt i

shear

aipr(D



FRANEC 6.0

Major improvements compared to the release 4.0 (Limongi & Chieffi
2003, Chieffi & Limongi 2004) and 5.0 (Limongi & Chieffi 2006)

- FULL COUPLING of: Physical Structure - Nuclear Burning -
+ Chemical Mixing (convection, semiconvection, rotation)

- INCLUSION OF ROTATION: Transport of Angular Momentum (Advection/Diffusion)

- MASS LOSS (Enhanced mass loss for RSG phase, Van Loon 2005)

- TWO NUCLEAR NETWORKS :
197 isotopes (490 reactions) H/He Burning
324 isotopes (3019 reactions) Advanced Burning

- SOLAR COMPOSITION (Asplund et al. 2009)

We have implemented both schemes:
the advection+diffusion & the pure diffusive



FRANEC 6: current release 6.130329
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Which turbulent horizontal diffusivity D, use in the code?

M=15 Msun [Fe/H]=0

DhMO3 n=1
DhMO3 n=5

DhZ92

Central H Mass Fraction

0.6 0.4 0.2 0 E 0.4 0.2
Central H Mass Fraction Central H Mass Fraction




Which turbulent horizontal diffusivity D, use in the code?

M=15 Msun [Fe/H]=—1

DhMO3 n=1
DhM0O3 n=5

DhZ92

4,2 4.0
Ceantral H Mass Fraction

0.6 0.4 0.2 . 0.6 0.4 0.2
Central H Mass Fraction Central H Mass Fraction




It is clear that some calibration is necessary!

We consider two free parameter directly connected to rotation:

fc that multiplies the total diffusion coefficient D that controls the mixing due to

the shear and the meridional circulation

f” that multiplies the gradient fo molecular weight



FRANEC 6: current release 6.130329
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M=20 Z=Z, v=300 km/s f.=1 M=20 Z=Z, v=300 km/s

f,=0.00 — f,=0.07 diff (red solid line)

£,=0.03 — £,=0.07 diff (blue solid line)
f,=1.00 — f,=0.20 diff (green solid line)
f,=0.03 — f,=1.00 adv—diff (black dashed line)
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Just a couple of additional technical problems...

Where do you extract the angular momentum from?

The same amount from each layer

The same percentage from each layer

An amount proportional to the distance from the surface
Down to a specific mass location or not

It is really correct to extract more angular momentum than that included in
the mass lost?

M=20 Msun [Fe/H]=0

Reference Matm= 0.01%

no ang. mom. loss from interior
Matm 1%

Matm variable (down to 107)




Just a couple of additional technical problems...

Which mass size should be adopted in the subatmosphere?

1%

0.1%
0.01%
even less?

The reference track was computed with
a subatmosphere equal to 10 Mg

Hc=0.08




Just a couple of additional technical problems...

Which mass size should be adopted in the subatmosphere?

1%

0.1%
0.01%
even less?

M=20 Msun [Fe/H]=0

Reference Matm= 0.01%

no ang. mom. loss from interior
Matm 1%

Matm variable (down to 107)

300 km/s




If you think that it is useful to study the
influence of rotation on the evolution of a star
with these physical/numerical tools, in the sense
that we can really learn something...
...you are hopeless but...
...let's go on...



Main effects of rotation on the surface properties of a star in H burning

fa) (black) non rotating
/' b) (red) only f, and f;
- ¢) (blue) transport of ang. mom.
d) (green) like c+transport c.c. due to mer.

e) (purple) full rotating model
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Main effects of rotation on the surface properties of a star in H burning
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Main effects of rotation on the surface properties of a star in H burning

v=0 km/s

Mass Fraction

— v=300 km/s_

D

D

Log(D) - @ (x107)

B 8 10
Interior Mass

53 8 10 12 14
In1er|or Mcss

- v=300 km/s
- v=0 I.(m/s

H

c
o
=
0
O
-
Lo
2]
]
o
=

sha

mer—mrc

/-—N\ fT/fP

Log(D) — @ (x107°)

20 30

Interior Mass

20

Interior Mc:ss

F ___ v=300 km/s
R v=0 km/s

~

Mass Fraction

D
r—circ

2

o

Log(D) — w (x107°)

CJM-h-G‘JCO—‘

10 20 30 40
Interior Mass

20 30 40 50

Interior Mass

h
o




v=300 km/s

t(H burn)
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Global effects of rotation on the evolution of the massive stars in H burning
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Global effects of rotation on the evolution of the massive stars in H burning
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Summarizing...at the end of the central H burning phase:

Models rotating at 300 km/s have:

smaller envelope masses but similar He core masses
higher mean molecular weight in the envelope

modified surface chemical composition



What happens to these stars (i.e. rotating initially at 300 km/s) in He burning?

Rotation affects the further evolution of these stars in two ways:

first of all indirectly because of the differences in the structures at the He ignition
second directly, basically within the He core: '

Log [ J spec,He= 0/‘1 spcc,H—exh]

[

4 6 8
Interior Mass (Mg)

Mass Fraction
o

"Nx10
L M -—I i L i "
4 8 8 10 12
Interior Mass (Mg) Interior Mass (Mg)

"“Nx1000 “He
L 1 X f f f I I

~
(=]

5 10

15 Mg 60 Mg
v=300 km/s 160 v=300 km/s

Log [“Ispoc.m:O/‘Japec.H—exh]

10 15
Interior Mass (Mg)

Mass Fraction

Lo 9 [ J spoc,He=0/‘l spec.H—oxh]

o

10 15 20 25
Interior Mass (Mg)

(€]
o




Logo[t(Myr)]

T L [
L v=300 km/s J
L e e v=0 km/s i
1.0 —12.0
I t(H burn) |
os5F eee_ U UUTTCTETIII 15 §
I 1 <
- trol/trmrol -1 -
L —8 |
0.0 —11.0
: t(He burn) :
] e 0.5
" 1 " L 1 " L L 1 1 1 " |
0 20 40 60 80 100 120
Initial Mass (Mg)
35 [ T T T T T T ]
d 10.4
3o0F Le®t
s ke 0.2
- - o
B ‘* -
7 s 2 .e? oo
o L ] - 4
= 20F - 1 p
= ¥ = 1-0.2 =8
2 15k \ ] 5
o - J_
= L === CO-core . 0.4
10F 1-086
; — v=300 km/s ]
5F === v=0 km/s -:—0.8
ok . ! ! ! ! . 1-1.0

o

40 60 80
Initial Mass (Mg)

100 120

tRSG/tHe—bum)

o o o =

e )] oo o
o T T T

©
N

@
o

v=300 km/s

Central ,,C Mass Fraction

Central 1,C Mass Fraction

20 40 60 80
Initial Mass (Mg)

0.5 T T T T T
v=300 km/s

= 2

1 i

T
L]

@
S
—

©
T

0.0l . L L L L \

0 20 40 60 80 100 120
Initial Mass (Mo)

0.5 T T T T T
—v=300 km/s

=0 km/s

0.2

0 5 10 15 20 25
CO Core Mass (Mg)

30



Summarizing again... models rotating at 300 km/s...
...show up at the beginning of the advanced phases with:

larger CO core masses
lower C/O ratio in the CO core

smaller total masses



Hence...
rotating models will behave in the advanced burning phases basically

as more massive non rotating stars
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There is no more time for the transport of angular momentum so the
only changes occur in the convective zones where we assume
instantaneous redistribution of the angular momentum so that w is flat.
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What about the yields?
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CONCLUSIONS

(personal but strong)

In order to make any meaningful comparison with the real stars it is mandatory to
use a full set of models computed with a reasonable range of initial rotational
velocities: a properly done population synthesis is necessary.

(the use of just an average velocity may be highly misleading)

The idea of specific transition masses, for example the limiting mass the
explodes as a Type lIP supernova or the lowest mass that becomes a W, star

must be dropped. It becomes meaningless in presence of rotation because
rotation implies a SPREAD of these limiting masses over a certain range that
depends on the initial distribution of the rotational velocities.

Since the inclusion of the effects of rotation on the evolution of a star is still
HIGHLY qualitative, any statement suggesting the necessity to add some other
phenomenon “because rotation can't reproduce some observable” is really
premature: the first thing one should consider in this case is simply that rotation
has been included in such a qualitiative way that it can't have a real predictive
power. The present situation is totally similar to what happens with convection.



CONCLUSIONS

(more canonical)

Increase of the H burning lifetime

Modification of the surface chemical composition

Similar He core masses

Smaller envelope masses

Larger number of WR stars + changes in the internal ratios among the WR subclasses
Larger CO core masses

Lower C/O ratios at the end of the central H burning

Final steeper M-R relation

More massive remnants for a fixed final kinetic energy of the ejecta



® Galactic RSG

(Levesque et ol. 2005)

--- v=0 km/s
— v=300 km/s
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