EuroGENESIS Workshop

STELLAR MODELING: Mixing, Convection, Rotation and Mass Loss

Barcelona, April 18-19, 2013

Rotation: implementation and needs

Alessandro Chieffi

INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica, Italy
Centre for Stellar and Planetary Astrophysics - Monash University - Australia

INAF - Osservatorio Astronomico di Roma, Italy
Institute for the Physics and Mathematics of the Universe, Japan
Centre for Stellar and Planetary Astrophysics - Monash University - Australia

Why do we spend our time to study the effects of rotation on the evolution of the stars?

Why do we spend our time to study

the effects of rotation on the evolution of the stars?

Well......because stars....simply rotate

The Astrophysical Journal, 722:605-619, 2010 October 10
doi:10.1088/0004-637X/722/1/605
Q 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

A STELLAR ROTATION CENSUS OF B STARS: FROM ZAMS TO TAMS

Wenjin Huang ${ }^{1,4}$, D. R. Gies ${ }^{2}$, and M. V. McSwain ${ }^{3}$

${ }^{1}$ Department of Astronomy, University of Washington, P.O. Box 351580, Seattle, WA 98195-1580, USA; hwenjin@astro.washington.edu
${ }^{2}$ Center for High Angular Resolution Astronomy, Department of Physics and Astronomy, Georgia State University, P.O. Box 4106, Atlanta, GA 30302-4106, USA; gies@chara.gsu.edu
${ }^{3}$ Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015, USA; mcswain@lehigh.edu Received 2010 April 28; accepted 2010 August 10; published 2010 September 22

Figure 6. $V \sin i / V_{\text {crit }}$ histogram of all young B stars in our sample with $\log g_{\text {polar }}>4.15$. Its polynomial fit is plotted as a thin solid line. The $V_{\text {eq }} / V_{\text {crit }}$ distribution curve deconvolved from the polynomial fit is plotted as a thick solid line.

```
A&A 496, 841-853(2009)
DOI: 10.1051/0004-6361/200809925
DOESO 2009 ESO 2009
```

Astronomy

The VLT-FLAMES survey of massive stars: constraints on stellar evolution from the chemical compositions of rapidly rotating Galactic and Magellanic Cloud B-type stars ${ }^{\star}$, \star

1. Hunter ${ }^{1}$, L. Brott ${ }^{2}$, N. Langer2, D. J. Lennon ${ }^{3}$, P. L. Dufton ${ }^{1}$, L. D. Howarth ${ }^{4}$, R. S. I. Ryans ${ }^{1}$, C. Trundle ${ }^{1}$, C. J. Evans ${ }^{5}$, A. de Koters ${ }^{62}$, and S. J. Smartt ${ }^{1}$

Astrophysisc Research Center, School of Mathematiss \& Physics, The Queen's University of Belfast, Belfast, BT7 INN
Northem Ireland, UK Northem Ircland UK
c-mail i.hunterdquib

 Astrooomical Instirute Antoo Pamodiok, Univesiiy or Amatertim, Knislan 403, 1098 SJ Amsterdam, The Netherlands Received 7 April 2008 / Accepted 5 hemary 2009

Aims. We have perviously malysed the spoctro of 135 carly B-vpe stars in the Large Magellanic Cloud (LMC) and found several
groups of stas that have chemical conpositios that confict with the theory of rotational mixing. Here we extend this study to

Chemical compositions are presented for 53 Galactic and 96 SMC stars and compared with the results for the 135 LMC stars from Paper VII. In order to investigate the role of rotational mixing, a large population of fast rotators is necessary. Our targets have projected rotational velocities up to $\sim 300 \mathrm{~km} \mathrm{~s}^{-1}$ and hence

Fig. 7. Nitrogen abundance $(12+\log [\mathrm{N} / \mathrm{H}])$ as a function of projected rotational velocity for the SMC sample of stars. Symbols are equivalent to those in Fig. 5. The lower panel is equivalent to the upper panel except that upper limits to the nitrogen abundances have been removed. Evolutionary models are plotted for 12 and $13 M_{\odot}$ in panels a) and b).

Rotation basics

To keep a long story short... ...it was recognized long time ago that it is possible to simulate the influence of rotation on the structural shape of a star with a 1D code by adopting three reasonable assumptions:

Since no work must be done to move on an isobar, Zahn (1992)

1) Shellular rotation proposed that both the chemical composition and the angolar velocity are constant on an isobar as a consequence of a "vigorous" horizontal mixing.

Rotation basics

To keep a long story short...
...it was recognized long time ago that it is possible to simulate the influence of rotation on the structural shape of a star with a 1D code by adopting three reasonable assumptions:

Since no work must be done to move on an isobar, Zahn (1992)

1) Shellular rotation proposed that both the chemical composition and the angolar velocity are constant on an isobar as a consequence of a "vigorous" horizontal mixing.
2) Roche approximation

Mass strongly centrally concentrated

$$
M(\theta)=M_{c o n s t}
$$

Rotation basics

To keep a long story short...
...it was recognized long time ago that it is possible to simulate the influence of rotation on the structural shape of a star with a 1D code by adopting three reasonable assumptions:

1) Shellular rotation

Since no work must be done to move on an isobar, Zahn (1992) proposed that both the chemical composition and the angolar velocity are constant on an isobar as a consequence of a "vigorous" horizontal mixing.
2) Roche approximation

Mass strongly centrally concentrated

$$
M(\theta)=M_{\text {const }}
$$

3) Equivalent volumes

$$
V_{\Psi}=\int_{r} \int_{\Psi} d n d \sigma
$$

$$
V_{\Psi}=\frac{4}{3} \pi r_{\Psi}^{3}
$$

Two different cases should, in principle, be considered:

Conservative case

if ω has cylindrical symmetry it is possible to define a total potential Ψ :

NON Conservative case

The same surface Ψ is not any more the potential but it is still an isobar:

NON Conservative case

The same surface Ψ is not any more the potential but it is still an isobar:

$$
\begin{aligned}
& \frac{d P}{d M_{\Psi}}=-\frac{G M_{\Psi}}{4 \pi r_{\Psi}^{4}} \cdot f_{P} \\
& \frac{d M}{d r_{\Psi}}=4 \pi r_{\Psi}^{2} \bar{\rho}
\end{aligned}
$$

$$
\frac{d \ln \bar{T}_{\Psi}}{d \ln P_{\Psi}}=\frac{3 \bar{\kappa}_{\Psi} L_{\Psi} P_{\Psi}}{16 \pi a c G \bar{T}_{\Psi}^{4} M_{\Psi}} \cdot \frac{f_{T}}{f_{p}}
$$

$$
d L=\bar{\epsilon}_{\psi} \Delta M
$$

$$
\begin{gathered}
f_{P}=\frac{4 \pi r_{\Psi}^{4}}{G M_{\Psi} S_{\Psi}<g_{e f f}^{-1}>} \\
f_{T}=\frac{16 \pi^{2} r_{\Psi}^{4}}{S_{\Psi}^{2}<g_{e f f}^{-1}><g_{e f f}>} \\
<g_{e f f}>=\frac{1}{S_{\Psi}} \int_{\Psi} g_{e f f} d \sigma \\
S_{\Psi}=\int_{\Psi} d \sigma=\int_{\Psi} r^{2} \sin \theta d \theta d \phi
\end{gathered}
$$

Rotation: basics

Common assumptions:
Shellular rotation
Roche approximation
Equivalent volumes

ω and c.c. constant on an isobar mass centrally concentrated Adoption of the radii of the equivalent spheres

Angular velocity ω :

cylindrical symmetry
(admits a potential)
$\begin{array}{ll}\text { Advantages } \quad \begin{array}{l}\rho \text { and } T \text { constant on an } \\ \text { isobar (also } k \text { and } \varepsilon \text {) }\end{array} \\ & \end{array}$
Advantages $\quad \rho$ and T constant on an $\begin{aligned} & \text { isobar (also } \mathrm{k} \text { and } \varepsilon \text {) }\end{aligned}$
Disadvantages
Solid body rotation
no restrictions
(no potential exists)

Shellular rotation only
ρ and T vary on an isobar (also k and ε)
... but in practice there is no difference (in a 1D code) between the cylindrical (conservative) and NON cylindrical (non conservative) cases, it is just a different interpretation of the physical quantities: constant versus average values on an isobar...
...but the next step is really the crucial one when talking of rotation: the treatment of the instabilities that may lead to the transport of the angular momentum and the mixing of the chemical composition ...

Question: which are the main instabilities in a rotating star?

Rotational instabilities: meridional circulation

The first one to notice that these two equations cannot be simultaneously fulfilled in radiative equilibrium was Von Zeipel (1924)

$$
\vec{F}_{\Psi}(r, \theta, \phi)=f(\Psi) \vec{g}_{e f f}(r, \theta, \phi)
$$

$$
\vec{\nabla} \cdot \vec{F}_{\Psi}(r, \theta, \phi)=\epsilon_{\Psi}
$$

Circolazione interna e instablititì nelle binarie strette 17
l'equatore verso i poli, mentre a profondità maggiore la corrente si dirigerà dai poli all' equatore.

Procedendo verso l'interno, al crescere di ρ si raggiungerà una super ficie equipotenziale in cui la densità ha il valore ρ^{*} dato dalla relazione $\rho^{*}=\frac{\omega^{2}}{2 \pi G}$

Questa superficie è caratterizzata dal fatto che sopra di essa la componente verticale della velocità è zero; essa non viene attraversata da cor-

Fig. 1
renti convettive e quindi separa la stella in due regioni distinte, fra le quali la circolazione corrispondente alla teoria qui svolta non prevede quali la circolazione corrispondente alla teria qui svoita non prevede
scambi di materia. In pratica è difficile pensare ad una separazione cosi

GRATTON - April 1944

Rotational instabilities: meridional circulation

The first one to notice that these two equations cannot be simultaneously fulfilled in radiative equilibrium was Von Zeipel (1924)

$$
\vec{F}_{\Psi}(r, \theta, \phi)=f(\Psi) \vec{g}_{e f f}(r, \theta, \phi)
$$

$$
\vec{\nabla} \cdot \vec{F}_{\Psi}(r, \theta, \phi)=\epsilon_{\Psi}
$$

Rotational instabilities: meridional circulation

The first one to notice that these two equations cannot be simultaneously fulfilled in radiative equilibrium was Von Zeipel (1924)

$$
\vec{F}_{\Psi}(r, \theta, \phi)=f(\Psi) \vec{g}_{e f f}(r, \theta, \phi)
$$

$$
\vec{\nabla} \cdot \vec{F}_{\Psi}(r, \theta, \phi)=\epsilon_{\Psi}
$$

$$
\vec{\nabla} \cdot \vec{F}_{r a d}=\rho \epsilon_{m u c}-\vec{u} \cdot\left(c_{P} \rho \vec{\nabla} T-\delta \vec{\nabla} P\right)-c_{P} \rho \frac{\partial T}{\partial t}+\delta \frac{\partial P}{\partial t}
$$

Kippenhahn (1974)

$$
u_{B S}=\left(\frac{L}{M} \frac{\omega^{2}}{4 \pi G \rho g \delta}\right)\left(\frac{\nabla_{a d}}{\nabla_{a d}-\nabla_{r a d}}\right)
$$

Kippenhahn \& Mollenhoff (1974)

$$
u_{E S}=\left[\frac{\rho \epsilon}{g}-\frac{L}{M g}\left(1+\frac{\omega^{2}}{2 \pi G}\right)\right]\left(\frac{1}{\delta \rho}\right)\left(\frac{\nabla_{a d}}{\nabla_{a d}-\nabla}\right)
$$

Kippenhahn \& Weigert (1990)

$$
u_{E S}=\frac{8}{3} \frac{\omega^{2} r}{g} \frac{L}{M g} \frac{\gamma-1}{\gamma} \frac{1}{\nabla_{a d}-\nabla}\left(1-\frac{\omega^{2}}{2 \pi G \rho}\right)
$$

Maeder \& Zahn (1998)
Nightmare

Rotational instabilities: meridional circulation

Expression of the meridional circulation as provided by Maeder \& Zahn (1998)

$$
U=\frac{P}{\rho \bar{g} C_{p} T\left[\nabla_{a d}-\nabla+(\varphi / \delta) \nabla_{\mu}\right]}\left\{\frac{L}{M_{x}}\left[\frac{8}{3} \frac{\omega^{2} r^{3}}{G M}\left(1-\frac{\omega^{2}}{2 \pi G \rho}-\frac{\bar{\varepsilon}+\varepsilon_{q}}{\varepsilon_{m}}\right)-\frac{\rho_{m}}{\rho}\left(\frac{r}{3} \frac{d}{d r} A-2 \frac{H_{T}}{r}\left(1+\frac{D_{h}}{K}\right) \frac{\Theta}{\delta}+\frac{2}{3} \Theta\right)-\frac{\bar{\varepsilon}+\varepsilon_{g}}{\varepsilon_{m}}\left(A+f_{z} \varepsilon_{T} \frac{\Theta}{\delta}+\left(1-f_{z}\right) \Theta\right)-\frac{\omega^{2}}{2 \pi G \rho} \Theta\right]+\frac{C_{p} T}{\delta} \frac{\partial \Theta}{\partial t}\right\}
$$

$$
\Theta \equiv \frac{\tilde{\rho}}{\bar{\rho}}=\frac{1}{3} \frac{r^{2}}{g} \frac{d \omega^{2}}{d r} \quad A=H_{T} \frac{d}{d r}\left(\frac{\Theta}{\delta}\right)-\left(\chi_{T}+1-\delta\right) \frac{\Theta}{\delta}
$$

In principle meridional circulation moves matter through the star and hence it can both transport angular momentum and induce mixing of the chemical composition

Rotational instabilities

Are there additional instabilities induced by rotation?

Dynamical Shear

$\Delta z-1-\rho_{2} \leftarrow v_{2} \quad$| Restoring force | $f=-\frac{\partial \rho}{\partial z} \Delta z \cdot g \cdot \Delta V$ |
| :--- | :--- |
| Energy | $E_{\text {restoring }}=f \cdot \Delta z$ |

If the star rotates differentially, the extra energy of an eddy brought from layer 1 to layer $\mathbf{2}$ is given by:

$$
E_{\text {turbulent }}=\Delta M(\Delta v)^{2}=\rho \Delta V\left(\frac{\partial v}{\partial z} \Delta z\right)^{2}
$$

$$
R=\frac{E_{\text {restoring }}}{E_{\text {turbulent }}}=-\frac{\frac{g}{\rho} \frac{\partial \rho}{\partial z}}{(\partial v / \partial z)^{2}}=\frac{N^{2}}{(\partial v / \partial z)^{2}}
$$

$$
R=\frac{E_{\text {ressoring }}}{E_{\text {turbulent }}}=\left\{\frac{g^{2}}{P} \delta\left[\nabla_{a d}-\nabla+\frac{\varphi}{\delta}\left(\frac{\partial \ln \mu}{\partial \ln P}\right)\right] / /\left(\left(\frac{\partial \omega}{\partial \ln r}\right)^{2}\right]=\frac{N^{2}(\partial \ln r / \partial \omega)^{2}}{\rho}=\left(N_{T}^{2}+N_{\mu}^{2}\right)(\partial \ln r / \partial \omega)^{2}<\frac{1}{4}\right.
$$

Rotational instabilities

Are there additional instabilities induced by rotation?

Dynamical Shear

But we are clever...
thermal losses reduce the restoring force... as well as the Horizontal currents...

$$
\begin{aligned}
& R=\frac{E_{\text {restoring }}}{E_{\text {turbulent }}}=\left(N_{T}^{2}+N_{\mu}^{2}\right) \frac{(\partial \ln r / \partial \omega)^{2}}{\rho}=\left(\frac{\Gamma_{T}}{\Gamma_{T}+1} N_{T}^{2}+\frac{\Gamma_{u}}{\Gamma_{\mu}+1} N_{\mu}^{2}\right)(\partial \ln r / \partial \omega)^{2}<\frac{1}{4} \\
& \Gamma_{T}=\frac{v l}{6\left(K+D_{h}\right)} \quad \Gamma_{\mu}=\frac{\nu l}{6 \mathrm{D}_{h}} \quad \text { Turbulent horizontal diffusivity }\left(D_{h}\right)
\end{aligned}
$$

If one also assumes that the eddies have a continuum spectrum of velocities $v_{\mathbf{z}}$ also the idea of a strict criterion vanishes!

In other words there will be always some eddies for which $R<1 / 4$, so that any layer is in principle unstable with respect to the shear

We magically turn a strict on/off criterion

$$
R=\left(\frac{\Gamma_{T}}{\Gamma_{T}+1} N_{T}^{2}+\frac{\Gamma_{u}}{\Gamma_{u}+1} N_{u}^{2}\right)(\partial \ln r / \partial \omega)^{2}
$$

$$
R=\left(\Gamma_{T} N_{T}^{2}+\Gamma_{\mu} N_{\mu}^{2}\right)(\partial \ln r / \partial \omega)^{2}
$$

$$
R=\left(\frac{v l}{6\left(k+D_{h}\right)} N_{T}^{2}+\frac{v l}{6 \mathrm{D}_{h}} N_{\mu}^{2}\right)(\partial \ln r / \partial \omega)^{2}
$$

$$
R=\frac{v l}{3}\left(\frac{N_{T}^{2}}{2\left(k+D_{h}\right)}+\frac{N_{\mu}^{2}}{2 \mathrm{D}_{h}}\right)(\partial \ln r / \partial \omega)^{2}
$$

a diffusion coefficient always at work

$$
D_{\text {slecer }}=\frac{v l}{3}=2 \frac{R(\partial \omega / \partial \ln r)^{2}}{N_{T}^{2} /\left(K+D_{h}\right)+N_{\mu}^{2} / D_{h}}
$$

Rotational instabilities

Are there additional instabilities induced by rotation?

... just ... Shear

$$
\begin{aligned}
& \Delta z-\rho_{2} \leftarrow \nu_{2} \quad \begin{array}{c}
\text { But we are clever... } \\
\text { thermal losses reduce the restoring force... } \\
\text { as well as the Horizontal currents.... }
\end{array} \\
& R=\frac{E_{\text {restoring }}}{E_{\text {turbulent }}}=\left(N_{T}^{2}+N_{\mu}^{2}\right) \frac{(\partial \ln r / \partial \omega)^{2}}{\rho}=\left(\frac{\Gamma_{T}}{\Gamma_{T}+1} N_{T}^{2}+\frac{\Gamma_{\mu}}{\Gamma_{u}+1} N_{\mu}^{2}\right)(\partial \ln r / \partial \omega)^{2}<\frac{1}{4} \\
& \Gamma_{T}=\frac{v l}{6\left(K+D_{h}\right)} \quad \Gamma_{\mu}=\frac{v l}{6 D_{h}} \quad \text { Turbulent horizontal diffusivity }\left(D_{h}\right)
\end{aligned}
$$

$$
D_{\text {shear }}=\frac{8}{5} \frac{1 / 4(r d \omega / d r)^{2}}{N_{T}^{2} /\left(K+D_{h}\right)+N_{\mu}^{2} / D_{h}} \quad N_{T}^{2}=\frac{g \delta}{H_{P}}\left(\nabla_{a d}-\nabla_{r a d}\right) \quad N_{\mu}^{2}=\frac{g \delta}{H_{P}}\left(\frac{\phi}{\delta} \nabla_{\mu}\right)
$$

Rotational instabilities

What about the turbulent horizontal diffusivity D_{h} ?

Chaboyer \& Zahn 1992 AA 253,173
In fact, the meridional velocity and the horizontal diffusivity are strongly correlated: the horizontal turbulence obviously vanishes if there is no circulation. At the present, primitive stage of the theory, it does not seem unreasonable to assume that D_{H} and U_{2} are proportional, and thus to state that
$\frac{\left|r U_{2}\right|}{D_{\mathrm{H}}}=C_{\mathrm{H}}$,
C_{H} being a parameter of order unity. A more refined prescription

Zahn 1992 AA 265,115
As we have seen, two transport coefficients remain, which cannot be derived from first principles, namely the horizontal component of the turbulent viscosity v_{h}, and its companion, the horizontal diffusivity D_{h}. If we wish to proceed, we must content with some parametrization, whose arbitrariness can fortunately be limited by the few constraints that we have encountered.

Referring back to $(2.11 b)$, we note that the amplitude of the differential rotation will remain small only as long as v_{h} is of the order of $|2 V-\alpha U|$, or larger. The simplest way to implement this is to take

$$
D_{h}=\frac{1}{C_{h}} r|2 V-\alpha U|,
$$

Maeder 2003 AA 399,263

Ω_{2} between the two Eqs. (17) and (18). This gives for the coefficient of viscosity due to the horizontal turbulence
$v_{\mathrm{h}}=\operatorname{Ar}(r \bar{\Omega}(r) V[2 V-\alpha U])^{\frac{1}{3}}$
with $\quad A=\left(\frac{3}{400 n \pi}\right)^{\frac{1}{3}}$.
For $n=1,3$ or $5 A \approx 0.134,0.0927,0.0782$ respectively. This

Rotational instabilities

Are there additional instabilities induced by rotation?

Let me just mention the Solberg-Hoiland dynamical instability and the Goldreich-Schubert-Fricke (GSF) secular instability

$$
\begin{aligned}
& \Delta z--\rho_{2} \leftarrow j_{2} \quad \frac{d P}{d r}=-g \rho+\frac{\rho}{r^{3}} r^{4} \Omega^{2}=-g \rho+\frac{\rho}{r^{3}} j^{2} \\
& \text { Eddies move preserving their angular momentum } j \\
& \left.\rho_{1} \leftarrow j_{1} \frac{\partial^{2} r}{d t^{2}}=\left\{-\frac{g}{\rho}\left(\left(\frac{\partial \rho}{\partial r}\right)_{\text {eddyv }}-\left(\frac{\partial \rho}{\partial r}\right)_{e n v}\right)+\frac{\rho}{r^{3}}\left(\frac{\partial j^{2}}{\partial r}\right)_{\text {edrdv }}-\left(\frac{\partial j^{2}}{\partial r}\right)_{\text {envv }}\right)\right\} r=\left(N_{\rho}{ }^{2}+N_{j}{ }^{2}\right) r \\
& \text { Intrinsically negative }
\end{aligned}
$$

The SH instability grows only if j decreases outward

Rotational instabilities

Are there additional instabilities induced by rotation?

Let me just mention the Solberg-Hoiland dynamical instability and the Goldreich-Schubert-Fricke (GSF) secular instability

$$
\begin{aligned}
& \Delta z--\rho_{2} \leftarrow j_{2} \quad \frac{d P}{d r}=-g \rho+\frac{\rho}{r^{3}} r^{4} \Omega^{2}=-g \rho+\frac{\rho}{r^{3}} j^{2} \\
& \text { Eddies move preserving their angular momentum j } \\
& \rho_{1} \leftarrow j_{1} \frac{\partial^{2} r}{d t^{2}}=\left\{-\frac{g}{\rho}\left(\left(\frac{\partial \rho}{\partial r}\right)_{\text {ecthv }}-\left(\frac{\partial \rho}{\partial r}\right)_{e n v}\right)+\frac{\rho}{r^{3}}\left(\left(\frac{\hat{D}^{-2}}{<}\right)-\left(\frac{\partial j^{2}}{\partial r}\right)_{\text {erv }}\right)\right) r=\left(N_{\rho}{ }^{2}+N_{j}^{2}\right) r \\
& \text { Intrinsically negative }
\end{aligned}
$$

The SH instability grows only if j decreases outward

Rotational instabilities: the transport of the angular momentum

$$
\rho \frac{d}{d t}\left(r^{2} \omega\right)_{M,}=\frac{1}{5} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(\rho r^{4} \omega U\right)+\frac{1}{r^{2}} \frac{\partial}{\partial r}\left|\rho r^{4} D_{\text {shear }} \frac{\partial \omega}{\partial r}\right|
$$

This is an advective - diffusive equation

In order to find a stable solution for this equation (plus the nightmare expression for U), it is necessary to solve a system of four equations!

Rotational instabilities: the transport of the angular momentum

$$
\rho \frac{d}{d t}\left(r^{2} \omega\right)_{M,}=\frac{1}{5} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(\rho r^{4} \omega U\right)+\frac{1}{r^{2}} \frac{\partial}{\partial r}\left|\rho r^{4} D_{\text {shear }} \frac{\partial \omega}{\partial r}\right|
$$

This is an advective - diffusive equation

In order to find a stable solution for this equation (plus the nightmare expression for U), it is necessary to solve a system of four equations!

ALTERNATIVELY:

the transport of the angular momentum is often computed by adopting a pure diffusive equation (e.g. Heger, Langer \& Woosley 2000)

$$
\left.\left.\rho \frac{d}{d t}\left(r^{2} \omega\right)_{M_{r_{-}}}=\frac{1}{r^{2}} \frac{\partial}{\partial r} \right\rvert\, \rho r^{4}\left(D_{\text {shear }}+D_{m c}\right) \frac{\partial \omega}{\partial r}\right)
$$

FRANEC 6.0

Major improvements compared to the release 4.0 (Limongi \& Chieffi 2003, Chieffi \& Limongi 2004) and 5.0 (Limongi \& Chieffi 2006)

- FULL COUPLING of: Physical Structure - Nuclear Burning -
+ Chemical Mixing (convection, semiconvection, rotation)
- INCLUSION OF ROTATION: Transport of Angular Momentum (Advection/Diffusion)
- MASS LOSS (Enhanced mass loss for RSG phase, Van Loon 2005)
- TWO NUCLEAR NETWORKS $\mathrm{H} \rightarrow \mathrm{Pb}$:

197 isotopes (490 reactions) H/He Burning
324 isotopes (3019 reactions) Advanced Burning

- SOLAR COMPOSITION (Asplund et al. 2009)

We have implemented both schemes:
the advection+diffusion $\&$ the pure diffusive

FRANEC 6: current release 6.130329

$$
\begin{aligned}
& \frac{d P}{d M_{\Psi}}=-\frac{G M_{\psi}}{4 \pi r_{\Psi}^{4}} \cdot f_{P} \\
& \frac{d M}{d r_{\Psi}}=4 \pi r_{\psi}^{2} \rho \\
& \frac{d \ln T_{W}}{d \ln P_{W}}=\frac{3 K_{\psi} L_{\psi} P_{\psi}}{16 \pi a c G T_{\psi}^{4} M_{W}} \cdot \frac{f_{T}}{f_{p}} \\
& d L=\epsilon_{\psi} \Delta M \\
& \rho \frac{d}{d t}\left(r^{2} \omega\right)_{M,}=0 \\
& \frac{d Y_{i}}{d t}=\left(\frac{\partial Y_{i}}{\partial t_{m c}}\right)+\frac{\partial}{\partial m}\left[\left(4 \pi \rho r^{2}\right)^{2}\left(D_{\text {sem }}+D_{m i}+D_{\text {rot }}\right) \frac{\partial x_{i}}{\partial m}\right] \\
& i=1 . . . N \\
& 1 \text { system of } M_{\text {meshes }} \cdot\left(N_{\text {Boopopes }}+5\right) \text { ODEs }
\end{aligned}
$$

$$
\rho \frac{d}{d t}\left(r^{2} \omega\right)_{M_{r}}=\frac{1}{5} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(\rho r^{4} \omega U\right)+\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(\rho r^{4} D_{\text {shear }} \frac{\partial \omega}{\partial r}\right)
$$

U(Maeder \& Kahn 1998)
or

$$
\rho \frac{d}{d t}\left(r^{2} \omega\right)_{M_{r}}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[\rho r^{4}\left(D_{\text {shear }}+\frac{1}{30} r|U|\right) \frac{\partial \omega}{\partial r}\right]
$$

U(Maeder \& Kahn simplified 1998)

Which turbulent horizontal diffusivity D_{h} use in the code?

$M=15$ Msun $\quad[\mathrm{Fe} / \mathrm{H}]=0$

DhM03 $n=1$
DhM03 n=5
DhZ92
DhCZ92

Which turbulent horizontal diffusivity D_{h} use in the code?

$$
M=15 \text { Msun } \quad[\mathrm{Fe} / \mathrm{H}]=-1
$$

DhM03 n=1
DhM03 n=5
DhZ92
DhCZ92

It is clear that some calibration is necessary!

We consider two free parameter directly connected to rotation:

$\boldsymbol{f}_{\boldsymbol{C}}$ that multiplies the total diffusion coefficient D that controls the mixing due to the shear and the meridional circulation
$\boldsymbol{f}_{\boldsymbol{\mu}}$ that multiplies the gradient fo molecular weight

FRANEC 6: current release 6.130329

$$
\left.\rho \frac{d}{d t}\left(r^{2} \omega\right)_{M_{r}}=\frac{1}{5} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(\rho r^{4} \omega U\right)+\frac{1}{r^{2}} \frac{\partial}{\partial r} \right\rvert\, \rho r^{4} f_{C} D_{\text {shear }} \frac{\partial \omega}{\partial r}
$$

U(Maeder \& Kahn 1998)
$\left.\left.\rho \frac{d}{d t}\left(r^{2} \omega\right)_{M_{r}}=\frac{1}{r^{2}} \frac{\partial}{\partial r} \right\rvert\, \rho r^{4}\left(f_{C} D_{\text {shear }}+\frac{1}{30} r|U|\right) \frac{\partial \omega}{\partial r}\right]$

$$
\begin{aligned}
& \frac{d P}{d M_{\Psi}}=-\frac{G M_{\Psi}}{4 \pi r_{\Psi}^{4}} \cdot f_{P} \\
& \frac{d M}{d r_{\Psi}}=4 \pi r_{\Psi}^{2} \rho \\
& \frac{d \ln T_{\Psi}}{d \ln P_{\Psi}}=\frac{3 \mathrm{~K}_{\Psi} L_{\Psi} P_{\Psi}}{16 \pi a c G T_{\Psi}^{4} M_{\Psi}} \cdot \frac{f_{T}}{f_{p}} \\
& d L=\epsilon_{\Psi} \Delta M \\
& \rho \frac{d}{d t}\left(r^{2} \omega\right)_{M_{t}}=0 \\
& \frac{d Y_{i}}{d t}=\left(\frac{\partial Y_{i}}{\partial t_{m u c}}\right)+\frac{\partial}{\partial m}\left[\left(4 \pi \rho r^{2}\right)^{2}\left(D_{\text {semi }}+D_{\text {mix }}+f_{C} D_{\text {rot }}\right) \frac{\partial x_{i}}{\partial m}\right] \quad i=1 \ldots N \\
& 1 \text { system of } M_{\text {meshes }}\left(N_{\text {isotopeses }}+5\right) \text { ODEs } \\
& f_{P}=\frac{4 \pi r_{\psi}^{4}}{G M_{\Psi} S_{\Psi}\left\langle g_{e f f}^{-1}>\right.} \\
& f_{T}=\frac{16 \pi^{2} r_{\Psi}^{4}}{\left.S_{\Psi}^{2}<g_{q f}^{-1}><g_{q f}\right\rangle}
\end{aligned}
$$

Just a couple of additional technical problems...

Where do you extract the angular momentum from?

The same amount from each layer
The same percentage from each layer
An amount proportional to the distance from the surface
Down to a specific mass location or not
It is really correct to extract more angular momentum than that included in the mass lost?

$$
M=20 \text { Msun } \quad[\mathrm{Fe} / \mathrm{H}]=0
$$

Reference Matm= 0.01\%

no ang. mom. loss from interior
Matm 1\%
Matm variable (down to 10^{-7})

Just a couple of additional technical problems...

Which mass size should be adopted in the subatmosphere?

```
1%
0.1%
0.01%
even less?
```


Just a couple of additional technical problems...

Which mass size should be adopted in the subatmosphere?

1\%

0.1\%
0.01\% even less?

$$
M=20 \text { Msun } \quad[\mathrm{Fe} / \mathrm{H}]=0
$$

Reference Matm= 0.01\%
no ang. mom. loss from interior
Matm 1\%
Matm variable (down to 10^{-7})
300 km/s

If you still think that it is useful to study the influence of rotation on the evolution of a star with these physical/numerical tools, in the sense that we can really learn something...
...you are hopeless but...
...let's go on...

Main effects of rotation on the surface properties of a star in H burning

Main effects of rotation on the surface properties of a star in H burning

Main effects of rotation on the surface properties of a star in H burning

Global effects of rotation on the evolution of the massive stars in H burning

Global effects of rotation on the evolution of the massive stars in H burning

Comparison among different authors

Summarizing...at the end of the central H burning phase:

Models rotating at $300 \mathrm{~km} / \mathrm{s}$ have:
smaller envelope masses but similar He core masses
higher mean molecular weight in the envelope
modified surface chemical composition

What happens to these stars (i.e. rotating initially at $300 \mathrm{~km} / \mathrm{s}$) in He burning?
Rotation affects the further evolution of these stars in two ways:
first of all indirectly because of the differences in the structures at the He ignition second directly, basically within the He core:

$$
\begin{array}{llll}
\\
0.0
\end{array}
$$

Summarizing again... models rotating at 300 km/s... ...show up at the beginning of the advanced phases with:
larger CO core masses
lower C/O ratio in the CO core
smaller total masses

Hence...

rotating models will behave in the advanced burning phases basically

 as more massive non rotating stars

There is no more time for the transport of angular momentum so the only changes occur in the convective zones where we assume instantaneous redistribution of the angular momentum so that ω is flat.

What about the yields?

Mild increase of the weak s-process component and of F

CONCLUSIONS

(personal but strong)

In order to make any meaningful comparison with the real stars it is mandatory to use a full set of models computed with a reasonable range of initial rotational velocities: a properly done population synthesis is necessary.
(the use of just an average velocity may be highly misleading)

The idea of specific transition masses, for example the limiting mass the explodes as a Type IIP supernova or the lowest mass that becomes a $\mathbf{W}_{\text {co }}$ star must be dropped. It becomes meaningless in presence of rotation because rotation implies a SPREAD of these limiting masses over a certain range that depends on the initial distribution of the rotational velocities.

Since the inclusion of the effects of rotation on the evolution of a star is still HIGHLY qualitative, any statement suggesting the necessity to add some other phenomenon "because rotation can't reproduce some observable" is really premature: the first thing one should consider in this case is simply that rotation has been included in such a qualitiative way that it can't have a real predictive power. The present situation is totally similar to what happens with convection.

CONCLUSIONS

(more canonical)

Increase of the H burning lifetime
Modification of the surface chemical composition
Similar He core masses
Smaller envelope masses
Larger number of WR stars + changes in the internal ratios among the WR subclasses
Larger CO core masses
Lower C/O ratios at the end of the central H burning
Final steeper M-R relation
More massive remnants for a fixed final kinetic energy of the ejecta

