Long-Lived Radionuclides as Indications of a Close-by Supernova Explosion in Deep-Sea Sediment Cores

Jenny Feige¹ A. Wallner^{1,2} L.K. Fifield² G. Korschinek³ S. Merchel⁴ G. Rugel⁴ P. Steier¹ S.R. Winkler¹

¹University of Vienna, VERA Laboratory

²ANU Canberra

³TU Munich

⁴HZDR Dresden

14. June 2013

The Origin of Cosmic Elements, Barcelona 2013 Long-Lived Radionuclides in Deep-Sea Sediment Cores

THE SOLAR NEIGHBORHOOD

- We live in a large cavity of thin, hot gas
- Extensions: 80-200 pc² × 600 pc
- The solar system is embedded in a denser, cooler cloud
- Formation of the Local Bubble by supernova explosions starting ~14 Myr ago
- 14-20 SN occured in a stellar moving group of stars belonging today to subgroups UCL and LCC of Sco-Cen

SUPERNOVA EXPLOSION IN THE SOLAR VICINITY

What happens, if a supernova explodes close to the solar system?

- Nuclides are ejected and entrained in the SN shell
- Expands rapidly through the interstellar medium
- SN envelope will hit the Earth
- Traces are left in terrestrial archives

Courtesy of TU Munich

How can the SN ejecta penetrate to Earth?

Scenario 1:

SN plasma overwhelms the solar wind \rightarrow engulfs the Earth in ejecta

- Hydrodynamic simulation of collision of the supernova ejecta with the solar wind
 - Distance of supernova: 10 pc
 - White circle: 1 AU
 - But: distance ≤ 10pc → biological damage!!
 - \rightarrow distance > 10 pc

TRANSPORT TO THE SOLAR SYSTEM

Scenario 2:

Delivery as freshly synthesized dust!

- Dust grains will decouple from the supernova plasma
- Poynting-Robertson effect: dust grains spiral into the sun

SN-produced Radionuclides on Earth

An enhanced concentration of ⁶⁰Fe was measured in the pacific ferromanganese crust from a depth of 4830 m.

60 Fe/Fe vs. the age in the crust 237KD.

Long-Lived Radionuclides in Deep-Sea Sediment Cores

TARGET ISOTOPES

Mainly Cosmogenic:

■ ¹⁰Be (t_{1/2}=1.4 Myr):

- Constantly produced in the Earth's atmosphere
- Measurement for dating purposes

Supernova Candidate Isotopes

- Produced in the Earth's atmosphere, stars, SNe
- $\blacksquare \rightsquigarrow$ Constant ²⁶Al flux with SN signal on top

⁵³Mn (t_{1/2}=3.7 Myr):

Produced in cosmic dust, massive stars, SNe

⁶⁰**Fe** (t_{1/2}=2.6 Myr):

Synthesized in massive stars and supernova-isotope

NOT produced in-situ on Earth

Courtesy of Silke Merchel

SN-produced Radionuclides in Deep-Sea Sediments

Two sediment cores from the Indian Ocean

The Origin of Cosmic Elements, Barcelona 2013 Long-Lived Radionuclides in Deep-Sea Sediment Core

SN-produced Radionuclides in Deep-Sea Sediments

Advantage:

- Sediment accumulation rate is higher than the growth rate of the ferromanganese crust
 - crust: 2.37 mm/Myr
 - Sediment cores: 3-4 mm/kyr
 - Factor 1000
 - Arrow Resolve the signal
 - → Constrain time period of the incoming shock wave

Disadvantage:

Signal might be diluted

DATING OF THE SEDIMENT CORES

- Pre-dating with Magnetostratigraphy
- Ferromagnetic particles align with magnetic field at time of deposition
- Black regions: normal magnetic field, white: reverse

E45-21:

299 cm ≙ ~0.7 Myr → sediment accumulation rate: ~4.3 mm/kyr

E49-53:

397 cm [≙] ~1.4 Myr → sediment accumulation rate: ~2.8 mm/kyr

Where do we expect to see a signal in in our Sediment cores? Magnetostratigraphy by Allison & Ledbetter 1982.

CHEMICAL SAMPLE PREPARATION

- Samples are processed at Helmholtz-Zentrum Dresden-Rossendorf
- Procedure takes ~2 weeks (7 samples)
- 71 samples ~> several months of sample preparation
- Starting weight: 3 g
- Result: a few mg of Al₂O₃, BeO, Fe₂O₃, MnO₂

Merchel & Herpers 1999: Schematic separation flow chart

AMS MEASUREMENTS

Participating AMS Facilities

- University of Vienna, VERA
- ANU Canberra (Toni Wallner)
- HZDR Dresden, DREAMS (Silke Merchel, Georg Rugel)
- TU Munich (Gunther Korschinek)

FIRST MEASUREMENT RESULTS OF ¹⁰BE/⁹BE

- ¹⁰Be/⁹Be vs Age in both cores measured with DREAMS
- Expected initial ¹⁰Be/⁹Be ratio in the Indian Ocean: ~10⁻⁷
- ¹⁰Be variability in sediments due to
 - climate change
 - change of magnetic field

FIRST MEASUREMENT RESULTS OF ²⁶AL/²⁷AL

AMS

measurements at VERA Laboratory, Vienna

- ²⁶Al/²⁷Al vs Age in both cores
- Data points tend towards the exponential decay curve and agree with each other

- We live in a cavity of thin, hot medium produced by supernova explosions
- An ⁶⁰Fe signal was found in a ferromanganese crust
- Continue the search in deep-sea sediment cores from the Indian Ocean
- Detect signals of the radionuclides ²⁶AI, ⁶⁰Fe, ⁵³Mn
- Confirm and resolve the peak, relative dating with ¹⁰Be/⁹Be measurements
- First results show good agreement with exponential decay curve
- ²⁶Al might be suitable for dating purposes