Study of the crucial nuclear reaction ¹⁴O(α, p)¹⁷F in X-ray bursts

HU, Jun

Institute of Modern Physics, CAS

1. Introduction

(Status and Puzzles)

1.1 Astrophysical Site and Process

Theoretical prediction:
¹⁴O(α,p)¹⁷F is, most probable, one of the breakout reactions (from HCNO cycle to rp-process) in χ-ray bursts.

 Present Status: Its reaction rate hasn't been determined very well yet.

1.2 Thermonuclear Reaction Rate

- Definition: how fast a reaction takes place
- Formula: reaction rate can be written as: $N_{\rm A} < \sigma v >= N_{\rm A} \left(\frac{8}{\pi\mu}\right)^{1/2} \left(\frac{1}{kT}\right)^{3/2} \int \sigma(E) E \times e^{(-\frac{E}{kT})} dE \quad (\rm cm^3 s^{-1} mole^{-1})$
- For single narrow resonance, reaction rate can be written as

$$N_{A} < \sigma v >_{res} = N_{A} (2\pi/\mu kT)^{3/2} \hbar^{2} \omega \gamma * exp(-E_{res}/kT)$$

=1.5394 × 10¹¹ (\(\muT_{g})^{-3/2} \overline{\omega} \gamma * exp(-11.605 * E_{res}/T_{s})^{-3/2} (-11.605 * E_{res}/T_{s})^{

($\omega\gamma$ in unit of eV, E_{res} in MeV, rate in cm³ s⁻¹ mol⁻¹)

Where

 $\omega = (2J_r+1) / [(2J_l+1)*(2J_2+1)] = \text{statistical factor},$ $\gamma = \Gamma_{in}*\Gamma_{out} / \Gamma_{tot},$ $\omega \gamma \text{ is the "resonance strength"}.$

For multiple resonances, total rate is $N_{\mathbf{A}} < \sigma v >_{\mathbf{R}} = 1.5394 \times 10^{11} \left(\frac{1}{\mu T_{9}}\right)^{3/2} \sum_{i} (\omega \gamma)_{i} \exp\left(-\frac{11.605 E_{\mathbf{R}}^{i}}{T_{9}}\right)$

1.3 Experimental goal

• To determine resonant properties of unbound states in ¹⁸Ne $(E_R, J_R, \Gamma_{\alpha})$

• To address astrophysical implication of the ${}^{14}O(\alpha,p){}^{17}F$ reaction

refs.: Harss et al., PRC 65 (2002) 035803

1.4 Puzzles from Gomez's experiment

refs.: J. Gömez del Campo et al., PRL 86 (2001) 43

1.4 *R*-Matrix reanalysis

According to the reanalysis, 1⁻ assignment for the 6.15 MeV is impossible for the observed peak structure.

The Gomez et al. data and the R-Matrix fit are questionable.

refs.: J.J. He et al., arXiv:1105.5882v1.

2. Experiment

(Study of the Resonant Elastic Scattering of ¹⁷F+p via thick-target method)

2.1 Methodology

Resonant elastic scattering of ¹⁷*F*+*p*

Principle of thick-target technique

2.2 Experiment layout @ CRIB

CNS Radioactive Ion Beam separator (CRIB)

2.3 Measurement setup

2.4 Identification of RIBs

TOF technique

 \rightarrow can identify the ¹⁷F⁹⁺ beam particles clearly !

2.5 Identification of recoiled particles

ΔE -E technique

 \rightarrow can identify the recoiled particles (p & α) clearly!

3. Preliminary Results

(Excitation function and *R*-matrix analysis)

3.1 Excitation function

3.2 R-matrix analysis

4. Summary

- 1. Proton resonant scattering of ¹⁷F+p was successfully performed.
- 2. The astrophysically crucial state 6.15-MeV in ¹⁸Ne was observed as a spin-parity assignment of 1⁻ with high statistics. The confirmation of 1⁻ on a firm ground clarified this previous discrepancy.
- 3. The 1– assignment with high statistics in this work firmly keeps the significant position of 6.15 MeV state.
- 4. A new state was observed at $E_x = 6.85$ MeV with a tentative spin-parity assignment of 0⁻ which could be the missing mirror state of 6.88-MeV, 0⁻ in ¹⁸O.

Thank you for your attention!