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Getting from this. . .
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. . .to this

Figures courtesy of NASA APOD (apod.nasa.gov)
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Tools to understand the stars
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An Example: Novae

Figures courtesy of NASA APOD (apod.nasa.gov)
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An Example: Classical Novae

• Occur in binary systems (Catalclysmic variables)

• Material accreted onto white dwarf
• Base of accreted matter becomes

electron-degenerate
• Nuclear reactions occur
• Temperature increases → thermonuclear

runaway
• White dwarf material dredged into burning

region
• Thermonuclear explosion → (total?) ejection

of matter
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Nuclear Reaction Cross Sections

Reaction Rate per Particle Pair

⟨σv⟩ ∝
∫ ∞

0
Eσ(E)e−E/kT dE

• Particle velocities distributed according to a
Maxwell-Boltzmann distribution

• For a known temperature, we only need to
know σ(E) to calculate reaction rate

Richard Longland UPC Quantum Physics Seminar Dec. 5, 2022 8 / 27



Quantum Tunneling

I II III
V (x) =


0 x < 0
V0 0 < x < a
0 x > a

ΨI =Aeik1x + Be−ik1x

ΨII =Ceik2x + De−ik2x

ΨIII =Eeik3x + Fe−ik3x

k1 = k3 =

√
2mE
ℏ2

k2 =

√
2m(E − V0)

ℏ2

• F = 0
• k2 is imaginary if E < V0

• Wave function in region II becomes

ΨII = De−k2x , k2 =

√
2m(V0 − E)

ℏ2
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Quantum Tunneling

Probability of tunneling:
T = |E |2/|A|2

T =
1

1 + 1
4

V 2
0

E(V0−E) sinh
2(k2a)

E
T
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Measuring Nuclear Reaction Cross Sections
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Ecm (keV)

σ 
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• Simplest case:
▶ Bombard target with a beam of particles (34S+p)
▶ Count the γ rays

• At 300 MK, kBT = 26keV !
• So only highest energy particles undergo nuclear reactions
• Consider 34S(p,γ)35Cl

▶ Measure resonances at Ecm
r ≈ 100 keV

▶ Typical γ-ray detector efficiency ∼1%
▶ Assume best-case solid 34S target
▶ Count rate: 1 × 10−7 counts per Coulomb
▶ World’s most intense proton beam: 20 mA: 1 × 10−4 counts

per hour
10 counts in 11 years
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Particle Transfer Reactions
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Elastic Scattering

Incoming plane wave

Target

Target

Detector

Case for ℓ = 0

• Total wave function far from the target

Ψ(⃗r) = N
[
ei k⃗ ·⃗r + f (θ)

eikr

r

]
• Detectors don’t measure wave functions, they

measure flux = vΨ∗Ψ

• To combine the coordinate systems, we expand
the incoming wave in terms of partial waves:

eikz =
∞∑
ℓ=0

(2ℓ+ 1)iℓjℓ(kr)Pℓ(cos θ)

• The scattering amplitude becomes:

f (θ) =
1
k

∞∑
ℓ=0

(2ℓ+ 1)eiδℓ sin δℓPℓ(cos θ)
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Elastic Scattering

Case for ℓ = 1 Case for ℓ = 2 Case for ℓ = 3
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Elastic Scattering

Case for ℓ = 0,1,2,3

• The scattering amplitude is:

f (θ) =
1
k

∞∑
ℓ=0

(2ℓ+ 1)eiδℓ sin δℓPℓ(cos θ)

• Cross section measured by detector:

dσ
dΩ

= f ∗(θ)f (θ)

• Traditionally, use cross section to find δℓ, which derive from the shape
of the nuclear potential
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Transfer Reactions

• Elastic scattering on previous slides is dominant
• Small perturbation causes direct transfer from initial state to final state
• Cross section:

dσ/dΩ ∝ |⟨Ψ∗
f |V |Ψi⟩|2

• Use partial wave expansion again, but now there are often only a few contributing terms
→ dσ/dΩ tells us ℓ!

• Final state is described by core (32S) plus transferred nucleons
▶ Projectile in optical potential of target
▶ Perturbing nuclear potential (including transfer of nucleons)
▶ Outgoing particle in potential of residual
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The Triangle Universities Nuclear Laboratory

• Four-university consortium
▶ North Carolina State University
▶ North Carolina Central University
▶ The University of North Carolina at Chapel

Hill
▶ Duke University

• Three accelerator facilities
▶ The Tandem accelerator laboratory
▶ The Laboratory for Experimental Nuclear

Astrophysics
▶ The High Intensity γ-ray Source
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The Triangle Universities Nuclear Laboratory

• Beam capabilities
▶ p, d (∼ 1µA)
▶ 3He, 4He (∼ 500 enA)
▶ Heavier species with SNICS (7Li at

∼ 400 enA)
▶ Chopping/Bunching capabilities

• 10 MV Tandem accelerator
• Enge Split-pole Spectrograph

▶ Placed on the high-resolution beam-line at TUNL
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Performing transfer measurements

• Requirements
▶ Measure outgoing (charged) particles
▶ Angle dependent measurement
▶ High resolution (tens of keV)
▶ Particle ID

Richard Longland UPC Quantum Physics Seminar Dec. 5, 2022 19 / 27



An Example: 34S Destruction in Novae
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Sulphur Production in Novae
• Situation in 2016

▶ 34S(p,γ)35Ar reaction rate purely theoretical
▶ Assume “typical” uncertainties of a factor of 10
▶ Simple nova model

P
(34

S
)
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10-6 10-5 10-4 10-3 10-2 10-1

34S

Nuclear uncertainties were so large that sulfur could not be a good diagnostic of novae
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Experimental Details

• Targets produced by evaporation of CdS
onto 30 µg/cm2 carbon foils (2000 Å)

• Rutherford Backscattering Spectrometry
(RBS)

▶ 16 (2) µg/cm2 of sulphur
▶ 44 (4) µg/cm2 of cadmium
▶ 32 (3) µg/cm2 of carbon

• 4He++ beam accelerated to 21 MeV
• Light reaction products measured at 10◦,

15◦, 19◦, 30◦, 35◦, 40◦, 45◦, and 50◦

• Positions of light reaction products yields
excitation energies
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Experimental Results

• 66 individual excited states populated
• 10 astrophysically-important states
• Excitation energies extracted
• Spin-parities of excited states inferred
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Spin-parity Assignments
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Spin-parity Assignments
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Experimental Results

• Nucleosynthesis uncertainty of 34S
in novae dramatically reduced

• Identified states that most affect
nucleosynthesis

• Reaction rate uncertainties determined through Monte
Carlo uncertainty propagation technique

• Reaction rate uncertainty reduced by an order of
magnitude

• Gillespie, PRC 96 025801
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Summary

• Astrophysically-important nuclear reaction cross sections are notoriously hard to measure
• Novel methods can be employed to constrain them
• At NC State and the Triangle Universities Nuclear Laboratory, we perform particle-transfer

reactions using a high-resolution magnetic spectrograph

• 34S(p,γ)35Cl reaction rate uncertainty reduced by almost an order of magnitude
• Sulphur production in nova explosions significantly constrained
• Aspects of cross section identified for further study
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Summary

Thank you!
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Nuclear Astrophysics: An example. . .

Let’s calculate the rate of 34S(p,γ)35Cl in a nova explosion.

• Tnova ∼ 250 MK
• ρnova ∼ 8 × 103g/cm3

• Mnova ∼ 0.04M⊙ = 1 × 1029 g

• Initial mass fraction of 1H X (H) = 0.4
• Initial mass fraction of 34S

X (S) = 5 × 10−6

• NH = 4 × 1028 atoms of 1H
• NS = 1 × 1022 atoms of 34S

• Given the reaction rate of 34S(p,γ)35Cl
NA⟨σv⟩ ≈ 8 × 10−5cm3mol−1s−1

• ⟨σv⟩ is the reaction rate per particle pair
• Rate of reactions per 34S
λS ≈ ρ XH

MH
NA⟨σv⟩ ∼ 6 × 10−4s−1

• R = 4 × 1018 reactions per
second!
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An Example: Classical Novae - Dust

N. Liu et al., Astrophys. J. 820 (2016) 140
More importantly, none of the nova models can ex-

plain the 34S anomalies found in two putative nova
grains. . . However, it is noteworthy to point out that the
production of S isotopic abundances is still affected by
nuclear uncertainties

J. Nuñez et al., Biointerphases 13 (2018) 03B301
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An example. . .

• What if we make a small plasma (of the
same temperature and chemical make-up) in
the lab?

1cm3

▶ Typical plasma density on earth:
ρNA/MH = 1 × 1016 atoms/cm3

▶ The rate of reactions per 34S
λS ≈ ρ XH

MH
NA⟨σv⟩ ∼ 5 × 10−13

▶ So, in our “mini plasma”, R = 0.02 reactions
per second

▶ 100 reactions per hour

• Can we make a confined 250 MK plasma?
• Can we maintain it this long?
• What about all of the other reactions

occurring?
• Does the plasma mimic the conditions in the

star?
• How do we count the reactions?
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Resonance ingredients
• Reaction rate (from before):

⟨σv⟩ =
(

2π
µkT

)3/2

ℏ2
∑

i

ωγie−Er/kT

• The partial width can be calculated using

Γp ∝ PℓC2Sθ2
sp

• Pℓ: Penetration factor. Depends on Coulomb force and can be calculated. Depends strongly
on Er

• θsp: Single-particle reduced width calculated from theory
• C2S

▶ Clebsch-Gordan coefficients (calculate these)
▶ Spectroscopic Factor: Must be experimentally measured. Describes how “single-particle-y” a state

is.
dσ
dΩ

= C2S
dσ
dΩ theory
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Focal-plane Detector Performance - Particle ID

• Position sections function independently of
∆E

• Maximum resolution corresponds to
∆(ρ) ∼ 0.2 mm (2 in 10,000)

• Added wavelength-shifting fiber readout for
more compact, sturdy design

• Custom-designed signal read-out electronics
to improve noise characteristics
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