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Introduction (I)

• Nucleosynthesis in stellar environments is investigated using computer 
models to evaluate the evolution of abundances according to the time-
evolution of their reaction rates in an astrophysical system. 

• Nucleosynthesis can sometimes be computed synchronously with the 
hydrodynamical system (time-consuming process).

• To alleviate this constraint, and depending on the number of nuclides 
needed, two different strategies can be adopted with regard to the 
nuclear network used:

– (i) use a reduced nuclear network which is responsible for energy 
generation and is therefore essential for any accurate hydrodynamical
evolution of the system.

– (ii) use a reaction network that is necessary for detailed computation of 
nucleosynthesis (where T and ρ obtained from step (i) are used).
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Introduction (II)

• Parallel computing has been raised as the main permitting factor of 

more precise, and computationally intensive simulations. 

• Two different parallelization scenarios have been studied:

– Parallelization of the nucleosynthesis portion of the code, by 

parallelizing the solution of ordinary differential equations for the nuclear 

reaction network. Nucleosynthesis is by far the most time-consuming 

part of the calculations.

– Parallelization of the whole multi-zone hydrodynamic calculation. 

Performance results will be shown on the spherically symmetric, 

Lagrangian, hydrodynamic code SHIVA (José 1996; José & Hernanz

1998)
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Parallel Computer

• A parallel computer is formed by a group of processors that execute

specific tasks cooperatively with the goal of solving a particular

computational problem.

• In principle, parallelism is as simple as

applying N processors or CPUs to a

single problem, expecting to solve it

N times faster.

• However, speed-ups hinge on the nature of the problem being

parallelised: not all applications can be parallelised effectively.
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Source: toons4biz.com



Speed-up Model

• The Speed-up accomplished with the parallelisation can be 

approximated by:
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Parallel Performance
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When is parallelisation effective?

• To obtain good performance, communication time has to be kept to 

a small fraction of all computing time (Pancake et al. 1994).
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Post-processing parallelisation strategy
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Parallel Matrix Assembly (I)

One of the most time 

consuming stages of 

the computation is the 

construction of the 

matrix A that arises 

from the linearisation 

of the set of differential 

equations describing 

the time evolution of 

the network 

abundances:
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Parallel Matrix Assembly (II)
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Interpolation of Reaction Rates

Each node performs 

the interpolation of 

those reaction rates 

that it will be using 

afterwards in the 

construction of their 

local partition of the 

matrix A.
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Solution of the System of Equations

• The system of equations is solved using MUMPS; a software 

application for the solution of sparse systems of linear algebraic 

equations Ax = b on distributed memory parallel computers.

• Each node obtains a part of the solution vector.
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Energy Released Computation
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Each node performs 

the calculation of the 

Energy Released for 

specific nuclear 

reactions.

Afterwards, contribu-

tions from all nodes 

are summed up to 

account for the total 

released energy total



Performance: Total execution time
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Performance: Partial executions time
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Performance: Matrix inversion time
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Verdict: communication cost kills performance
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Aggregated simulation time (relative)

• The sequential execution spends most of the time inverting the 

matrix (82%) and building (16%) the system of equations.
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Aggregated simulation time (absolute)

18 April 2013 22Parallelisation of stellar codes

* Simulation with 5000 time-steps
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Fully coupled hydrodynamic code (SHIVA)

• In the SHIVA code, the outermost layers of the star (i.e. white dwarfs, 

neutron stars) are divided into N concentric mass shells. 

• The code computes the time evolution of the luminosity L, the radius r, the 

velocity v, the temperature T, the density , and the nuclear abundances X

for each shell.
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SHIVA Code Parallelisation
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• All processors execute an instance of the 

hydrodynamic code, so that each process 

computes all processing stages (equations of 

matter, opacities and artificial viscosity, 

linearised system of equations for the physical 

values, solution of the system by means of the 

Henyey's method, etc.). 

• When it comes to the computation of the 

nucleosynthesis and energy generated, each 

process performs the computation only on a 

subset of all shells. 

• After this, each process broadcasts to the rest 

of the processors the results of the 

nucleosynthesis for their subset of shells. 

• The execution proceeds redundantly on all 

nodes, all of them executing the same code 

with the same input data.
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Performance of the parallel SHIVA code (I)
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• Performance evaluation has been carried out with two different 

nuclear reaction networks used for Type I X-ray Bursts 

nucleosynthesis calculations:

– Reduced Simulation: with a reduced network consisting of 324 

isotopes and 1392 nuclear reactions,

– Extended Simulation: with a far more complete reaction network up to 

606 nuclides and 3551 nuclear reactions

Number of shells 

(N)
Nuclides

Nuclear 

Reactions

Reduced Simulation 200 324 1392

Extended Simulation 200 606 3551



Performance of the parallel SHIVA code (II)
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Performance Prediction (I)

• Each node distributes to all other processors the abundances obtained in 

the computation of their assigned shells. 

• This represents an ALLGATHER communication procedure where all 

processors get the data sent by the rest of processing nodes. The 

communication time of this algorithm is given by (Thakur et al, 2002):

n: total size of the data to be received

: latency (or start-up time) per message

: transfer time per byte. 

• Experimental measures in the GAA's Hyperion cluster have yielded the 

values = 1·10-5 sec. and = 5·10-8 sec.

• Incorporating         the, the speed-up formula can be expressed as:
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Performance Prediction (II)
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Performance Comparison

• The parallelised version of the SHIVA code (José 1996; José & 

Hernanz 1998) shows excellent performance results, with significant 

speed-up factors accomplished in a simulation with N=200 shells. 

• A speed-up factor of 26 is achieved with the reduced simulation with 

42 processors. An excellent speed-up factor of 35 is accomplished 

with the extended simulation. 
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Code Version
Number of 

shells (N)

Number of 

time-steps

Nuclide

s

Nuclear 

Reactions

Execution 

time

Sequential

version
200 100.000

324 1392 ~ 3 days

606 3551 ~ 15 days

Parallel version 

(42 processors)

324 1392 ~ 3 hours

606 3551 ~ 10 hours



We are almost there…

1. Introduction

2. Designing Parallel Applications

3. Parallelisation of a Nucleosynthesis Code

4. Parallelisation of a multi-zone Hydrodynamic Code

5. Conclusions

18 April 2013 31Parallelisation of stellar codes



Summary and Conclusions (I)

• Two numerical codes have been parallelised using the MPICH2 

implementation of the Message Passing Interface (MPI) for the 

design of parallel applications with clusters of distributed 

workstations:

– A nucleosynthesis code suitable for extensive post processing 

calculations, with a network containing 606 nuclides (H to 113Xe) and 

more than 3500 nuclear reactions. 

– A one-dimensional (spherically symmetric) hydrodynamic code, in 

Lagrangian formulation, built originally to model classical nova 

outbursts (SHIVA).
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Summary and Conclusions (II)

• As results have shown out, the performance of the parallel 

nucleosynthesis computation is much worst than the sequential, 1-

node version of the code. 

• This stems from the fact that the communication and message 

passing times between processors largely outgrow the computation 

time in the calculation of the parallel solution of the linearised

system of equations.

• In order to increase de computation to communication time ratio 

(and therefore increase parallel performance), it has to be increased 

the order of the matrix A.

• It has been found that in order to get significant speed ups in the 

parallelisation of the nucleosynthesis calculations, the order of 

matrix A should be around 10k elements.
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Order of the nucleosynthesis matrix 

• The linearised system of equations of the network abundances derivatives, 
is a small, sparse matrix whose order is limited by the number of isotopes of 
the nucleosynthesis network (NIS = 606).

• It is therefore not possible to parallelise efficiently the nucleosynthesis 
portion of the code, and efforts in this regard should be avoided.
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There are not so 

many isotopes, such 

that the problem size 

can be increased to a 

point where speed-

ups are accomplished 

in the parallel solution 

of the system.



Summary and Conclusions (III)

• The parallelised version of the multi-zone hydrodynamic code SHIVA 
shows excellent performance results. 

• Speed-up factors of ~26 and ~35 are achieved with the reduced and 
extended simulations respectively, when 42 processors are used in 
parallel to execute the application (with 200 shells).

• Simulations can now be executed in hours instead of days, and in days 
instead of months.

• Maximum speed-ups of ~40 and ~85 are predicted by the performance 
model when using 200 processors, for the reduced and extended 
simulations respectively.
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Summary and Conclusions (IV)

• In preparation…
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Questions?

THANK YOU
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