

olnaries with the MAG A. López-Oramas^{1,2}, D. Hadasch³, P. Munar-Adrover^{4,5} and D. Torres⁶ for **Collaboration** and J. Casares⁷

Compact binaries are systems composed of a star and a compact object, either a black hole (BH) or a neutron star (NS). They are possible very high energy (VHE, VHE>100 GeV) gamma-ray emitters. Despite the large number of observations devoted to the search, only five of these systems have been detected at these energies. MAGIC

¹ Institut de Física d'Altes Energies (IFAE), E-08193, Barcelona, Spain ² now at Laboratoire AIM, SAp, DSRM/IRFU, CEA/Saclay, FR-91191 Gif-sur-Yvette, France ³ Japanese MAGIC Consortium, ICRR, The University of Tokyo, Department of Physics and Hakubi Center, Kyoto University, Tokai University, The University of Tokushima, KEK, Japan ⁴ Universitat de Barcelona, ICC, IEEC-UB, E-08028 Barcelona, Spain ⁵ now at Institute for Space Astrophysics and Planetology (IAPS), Instituto Nazionale di Astrofisica (INAF) Via Fosso del Cavaliere 100, Roma, Italy

is actively looking for new gamma-ray binaries and studying the behavior of the already detected systems. In this contribution, the most recent results on the observations in this field addressed by MAGIC will be presented: the latest outcomes on a multi-year campaign of the gamma-ray binary LS I +61° 303 or the search of VHE emission from two candidates: MWC 656 and SS 433.

⁶ICREA and Institute for Space Sciences (CSIC\IEEC), E-08193,Barcelona, Spain Inst. de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain

THE GAMMA-RAY BINARY LS I +61° 303

- Gamma-ray binary composed of a BOVe star + unknown compact object, with an orbital period is 26.4960(28) days [1]
- Periodical VHE outburst is detected during the apastron passage $(\Phi = 0.5 - 0.75)$
- Sporadic VHE emission is detected at later phases ($\Phi = 0.8 1.0$)

AGILE 2010 July

To observer

in radio [6].

Super-orbital modulation

VHE flux stands yearly variability

0.5

0.0

AU

The super-orbital signature is compatible with the radio 4.5-year modulation at a 8% (χ 2/ndf = 27.18/18) level

- Super-orbital modulation of the peak flux of 1667±8 days, discovered in radio [1] and detected in several wavelenghts
- The flip-flop scenario [2], where the system changes from a propeller regime (periastron) to an ejector regimen (apastron), has been proposed to explain the VHE emission of this binary

Spectral stability

- ✤ The VHE spectrum is compatible (at 23%) with a power-law with constant index $\alpha = 2.43 \pm 0.04$ $(\chi 2/nd f = 8.9/7)$
- No super-orbital or high/low-emission

Optical/TeV observations

Search for optical/VHE (LIVERPOOL/MAGIC) correlation to to test conection between size of the disk and TeV emission PRELIMINARY

- Two relativistic jets, with a precessional period of 162.3 days, interact with the nebula
- Gamma rays absorption expected along 80% of the orbit [9]
- ✤ No significant VHE signal, neither from the SS 433, nor from the western/eastern interaction regions (Fig. 6) [10]

detection at high energies by *Fermi*-LAT [5] neither

Simultaneous MAGIC, X-ray (XMM-Newton) and

optical (STELLA) observations performed (Fig. 4).

ACKNOWLEDGEMENTS: The MAGIC Collaboration gratefully acknowledges financial support from the agencies and organizations listed in: https://magic.mpp.mpg.de/backend/uploads/ackonwledgements.txt. J.C. acknowledges support by the Spanish Ministerio de Economía y Competividad (MINECO) under grant AYA2010-18080