

NEW INSIGHTS FROM THE OPTICAL STUDY OF 'SPIDERS'

RENE BRETON UNIVERSITY OF MANCHESTER

EWASS 25 JUNE 2015 WITH MANY COLLABORATORS (V. DHILLON, J. HESSELS, M. VAN KERKWIJK, M. ROBERTS, ...)

WHY DO PULSAR MASSES MATTER?

Our understanding of fundamental physics in the regime of a neutron star's centre is rather poor.

THE EQUATION OF STATE

Measuring both mass and radius in a given neutron star is experimentally difficult.

▶ Statistical properties of radii and masses can independently restrain the phase space.

SPIDERS: BLACK WIDOWS AND REDBACKS

▶?

ORIGIN AND FATE OF SPIDERS

ORIGIN AND FATE OF SPIDERS

(see e.g. Istrate et al. 2014) (]

(More in T. Tauris' talk)

HOW TO MEASURE MASSES

Pulsar radio timing

- ▶ 5 Keplerian parameters
- Unknown masses and orbital inclination
- Optical follow-up of the companion
 - ▶ Light curves → orbital inclination
 - Spectroscopy → mass ratio (from projected velocity)

DIFFICULTY #1: LIGHT CURVE MODELLING

Irradiated model works well to first order but...

- Short timescale variability
- Spotty surface
- Asymmetric light curve
- : Hinders orbital inclination measurement

(see also Romani al. 2015)

DIFFICULTY #1: LIGHT CURVE MODELLING

Irradiated model works well to first order but...

- Short timescale variability
- Spotty surface
- Asymmetric light curve
- : Hinders orbital inclination measurement

Flux variability but no/little colour change (difficult to reconcile with eclipses)

PSR J1544+4937

Tang et al. (2014)

DIFFICULTY #1: LIGHT CURVE MODELLING

Irradiated model works well to first order but...

- Short timescale variability
- Spotty surface
- Asymmetric light curve
- : Hinders orbital inclination measurement

Breton et al. (in prep)

DIFFICULTY #2: SPECTROSCOPIC MODELLING

The projected companion velocity doesn't track the centre of mass
Solution: use ICARUS to model spectrum directly

- Spectral 'features' departing from LTE
- : Hinders mass ratio measurement

van Kerkwijk et al. (2011)

DIFFICULTY #2: SPECTROSCOPIC MODELLING

The projected companion velocity doesn't track the centre of mass
Solution: use ICARUS to model spectrum directly

- Spectral 'features' departing from LTE
- : Hinders mass ratio measurement

van Kerkwijk et al. (2011)

THE PULSAR MASS LANDSCAPE

FUTURE PROSPECTS: HOW LIGHT/HEAVY?

- SKA should multiply the number of known binary pulsars by ~100
 - Catching light/heavy pulsars
 - Statistical analysis of the mass distribution

Tauris et al. (2015)

FUTURE PROSPECTS: HOW LIGHT/HEAVY?

CONCLUSIONS & OPEN QUESTIONS

▶ 3(4) transitioning LMXB-pulsars systems so far

All are redback-type

Can black widows experience state transition?

What does trigger the state transition?

Is the radio pulsar still `on' but screened, or has it turned `off'

What is happening in the accretion state?

Is the radio pulsar still `on' but screened, or has it turned `off'

Is the neutron star accreting?

Is a jet being launched?