MAGNETOSPHERIC ACCRETION IN TRANSITIONAL PULSARS

Caroline D’Angelo, Leiden University

26 June 2015

Amruta Jaodand, Anne Archibald, Jason Hessels, Alessandro Patruno, Slavko Bogdanov
J1023+0038: AN AMAZING PROBE OF ACCRETION MODELS

- Low accretion state: propeller?, radiatively-inefficient?)
- Known B, P
- Known timing solution
- Reasonable estimate of accretion rate

\[
\frac{\dot{P}_{\text{X-ray}}}{\dot{P}_{\text{radio}}} = 1 \pm 0.08 \\
\nu = 2.5 \times 10^{-15} \\
\dot{M} = 2.8 - 6.8 \times 10^{-5} \dot{M}_{\text{Edd}}
\]

From X-ray luminosity:
HOW DOES PULSAR WIND STAY ON!?

- Pulsar wind shielded from disc?
- Open field line region *should* be ~5 times larger in accreting state
- How strong is radio outflow?

\[
\frac{R_{LC}}{R_c} = \sqrt{\frac{R_g}{R_c}} \approx 0.2
\]

For ms pulsar
HOW DOES PULSAR WIND STAY ON!?

- Pulsar wind shielded from disc?
- Open field line region should be \(~5\) times larger in accreting state
- How strong is radio outflow?

\[
\frac{R_{LC}}{R_c} = \sqrt{\frac{R_g}{R_c}} \approx 0.2
\]

For ms pulsar

STAY TUNED!
MAGNETOSPHERIC ACCRETION

B field

Spin Period

Accretion Flow
MAGNETOSPHERIC ACCRETION

Accretion Flow

B field

Spin Period

Ω_K

$\Omega_* > \Omega_K$

“Propeller”

Star spins faster than disc: centrifugal barrier
THE ‘CRITICAL' ACCRETION RATE

\[\dot{M}_c = \frac{\xi}{\sqrt{2}} r_c^{-7/2} \mu^2 (GM)^{-1/2} \]

\[\dot{M}_c = \frac{\eta \mu^2}{8\Omega_*} r_c^{-5} \]

Pressure balance; \(\xi < 1 \) for rotating thin disk

Angular momentum balance; \(\eta < 1 \) describes torque efficiency

Critical accretion rate uncertain by \(\sim 40 \%

Radial inflow vs. disk-like: RIAF constraint

Boundary of accretion/propeller regime
A propeller doesn’t have to form

- \(r_m < 1.3 \, r_c \): angular momentum not enough to expel most gas in outflow (weak propeller)
- gas piles up in disc
- accretion onto star continues
- “Trapped disc” (inner edge trapped near \(R_c \))

A propeller doesn’t have to form

- \(r_m < 1.3 \, r_c \): angular momentum not enough to expel most gas in outflow (weak propeller)
- gas piles up in disc
- accretion onto star continues
- “Trapped disc” (inner edge trapped near \(R_c \))

A PROPELLER DOESN’T HAVE TO FORM

- \(r_m < 1.3 \ r_c \): angular momentum not enough to expel most gas in outflow (weak propeller)
- gas piles up in disc
- accretion onto star continues
- “Trapped disc” (inner edge trapped near \(R_c \))

A propeller doesn’t have to form

- Accretion on to star can cease completely without expelling disc
- “Dead Disc” (Shakura & Sunyaev, 1977)

<table>
<thead>
<tr>
<th>Propeller</th>
<th>Trapped disc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong outflow dominates</td>
<td>Weak outflow; gas accretes</td>
</tr>
<tr>
<td>Narrow range of \dot{M} produce pulsations</td>
<td>Pulsations to low accretion rates</td>
</tr>
<tr>
<td>Accretion flow dominates emission</td>
<td>Stellar surface dominates emission</td>
</tr>
<tr>
<td>Luminosity drops rapidly as accretion rate declines</td>
<td>Luminosity drops gradually</td>
</tr>
<tr>
<td>Propeller</td>
<td>Trapped disc</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Strong outflow dominates</td>
<td>Weak outflow; gas accretes</td>
</tr>
<tr>
<td>Narrow range of pulsations to low accretion rates</td>
<td>Stellar surface dominates emission</td>
</tr>
<tr>
<td>Accretion flow dominates emission</td>
<td>Luminosity drops gradually as accretion rate declines</td>
</tr>
</tbody>
</table>

We can test these two models in J1023+0038!
EFFICIENCY OF PROPELLER

Propeller (MHD sims)
(Ustyugova et al. 2006; Lii et al. 2014)

Accretion Flow

Boundary Layer

L/L_{Edd} vs. (M/M_{Edd})
J1023+0038: LIMITS ON PROPELLER SPIN

\[\dot{\nu} = 2.5 \times 10^{-15} \]

<table>
<thead>
<tr>
<th>(\frac{\dot{M}}{\dot{M}_c})</th>
<th>(\dot{\nu})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(9 \times 10^{-4})</td>
<td>(7 \times 10^{-15})</td>
</tr>
<tr>
<td>(2 \times 10^{-3})</td>
<td>(17)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\frac{\dot{M}}{\dot{M}_c})</th>
<th>(\dot{\nu})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.09)</td>
<td>(1.2)</td>
</tr>
<tr>
<td>(0.03)</td>
<td>(0.5)</td>
</tr>
</tbody>
</table>
J1023+0038: LIMITS ON PROPELLER SPIN

\[\dot{\nu} = 2.5 \times 10^{-15} \]

<table>
<thead>
<tr>
<th>(\frac{\dot{M}}{\dot{M}_c})</th>
<th>(\dot{\nu})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(9 \times 10^{-4})</td>
<td>(7 \times 10^{-15})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\frac{\dot{M}}{\dot{M}_c})</th>
<th>(\dot{\nu})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2 \times 10^{-3})</td>
<td>(17)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\frac{\dot{M}}{\dot{M}_c})</th>
<th>(\dot{\nu})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.09)</td>
<td>(1.2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\frac{\dot{M}}{\dot{M}_c})</th>
<th>(\dot{\nu})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.03)</td>
<td>(0.5)</td>
</tr>
</tbody>
</table>

Diagram:

- Higher accretion rate
- Thinner disk
- \(\dot{M}_c \)
TRAPPED DISC?

Tracks how well field couples to disc

\[\dot{\nu} = 0.03 - 120 \times 10^{-15} \]

Suggests very weak coupling

\[\frac{\Delta r}{r} \sim 0.001 - 0.1 \]
CONCLUSIONS

- Transitional MSPs offer strong constraints on magnetospheric accretion models
- Spindown identical to dipole case
- Propeller predicts larger spindown than constrained
- Trapped disc can work, on edge of parameter space
- Might be underestimating magnetic fields of typical pulsars?
- Something else?