Low-level accretion in transitional MSPs and connection with very faint X-ray binaries

Arash Bahramian

C. O. Heinke, N. Degenaar, R. Wijnands

EWASS 2015 - June 25, 2015

Very faint X-ray binaries

- Several transients with peak $L_x = 10^{34} 10^{36}$ erg/s around the Galactic center
- As numerous as bright LMXBs there (Degenaar+09, +10)

3 Weird aspects

1: Low peak Lx, low integrated Lx.

2: Time-averaged accretion rates very low suggestions that exotic systems (brown dwarf donor, IMBH accretor) needed (King & Wijnands 2006)

3: Several maintain continuous accretion rates too low to keep disk ionized, for months to years.

We argue (at least) 2 kinds of VFXBs; short orbital-period systems with short outbursts, and magnetospherically-choked accretion, lasting longer.

VFXBs: Short outbursts

- Defining peak luminosity L_X=10³⁴-10³⁶ erg/s
- Many outbursts only a few weeks long (~ 6 with shorter outbursts identified)
- Suggests small disk & short orbital period

VXFBs: Bright outbursts

- Some VFXBs have shown both faint and bright (>10³⁶ erg/s) outbursts
- Type 1 X-ray bursts prove NS nature

Degenaar+09

Quasi-persistent VFXBs

- several stay at $L_{\chi} = 10^{34} 10^{36}$ for years
- Nature unknown: Some can be slow pulsars, symbiotics, CVs
- At least one has shown bursts, proving NS nature, $L_{\chi} \sim 10^{34}$

Lightcurves

- Modeling outburst decay based on disk-instability model:
 - Exponential decay while irradiated
 - Linear decay afterwards
- This fits some <u>LMXBs</u> but **not all**

Observed lightcurve and fitted model (Powell+07)

Fitting VFXB lightcurves

- We fit 3 short outbursts of VFXBs with Exp+linear decay model
- Decay well-described by model: suggesting consistency of VFXB short outbursts with models
- Comparison with well-known systems suggests P_{orb} ~ 1hour (Heinke+15)

CXO J174540-290005 (Data: Koch+14, Fit: Heinke+15)

Quasi-persistent VFXBs

- Quasi-persistents break standard disk theory
- Below 20-30 minutes, UCXBs can keep disks stably accreting; but L_x must be >10³⁵ erg/s.
- At short periods, GR sets minimum Mdot.
- LMXBs with stable accretion at few*10³⁴ erg/s need new physics

UCXBs vs. evolution prediction (dotted) & stability lines. Transients as triangles, dots persistent. (Heinke+13)

A possible answer: Transitional **MSPs?**

Some quasi-persistent VFXBs show intermediate L_x; like tMSPs (Degenaar+14)

Arnason+15

A possible answer: Transitional MSPs?

0.6

Count Rate

Similar flaring behaviour is observed in VFXBs and tMSPs

Conclusion

- Behaviour of transient VFXBs can be described by disk instability models.
- However, behaviour of quasi-persistent VFXBs requires new physics.
- Behaviour of quasi-persistent VFXBs are similar to tMSPs:
 - Staying in intermediate states (~few*e33 erg/s)
 - Similar flaring behaviour
- We suggest quasi-persistent VFXBs might be tMSPs