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Preface

The experiments on ultracold gases provided in the last decade striking confir-
mations of the quantum nature of matter. As examples, we may mention the
direct imaging of interference of matter waves, of quantized vortices or of the
different effects of bosonic and fermionic statistics. Continuous technical im-
provements unveiled unexpected possibilities, and at present parameters such
as dimensionality, interaction strength and temperature can be tuned in the ex-
periments with incredible flexibility. Moreover, the modeling of ultracold gases
is particularly simple since, due to the extremely low densities involved, inter-
actions can generally be satisfactorily described in terms of two-body collisions.
Experiments on ultracold gases are contributing to a deeper understanding of
collision processes in atomic physics and of fascinating and complex theories
such as the BEC-BCS crossover. In addition, ultracold gases appear by now as
promising simulators for many puzzling quantum problems.

This thesis collects my research done under the supervision of Profs. Henrik
Smith and Christopher J. Pethick on a set of topics in the theory of ultracold
gases. In the first chapter, I present an introduction to ultracold gases followed
by a detailed description of the problems addressed in the course of my studies.
The second chapter reviews the theory of two-body collisions, presenting both
its elementary and its more advanced features. In the following three chapters
I report the results of my work.

The third and fourth chapters contain material that have been published as:

e P. Massignan, C. J. Pethick, and H. Smith, “Static properties of positive
ions in atomic Bose-Einstein condensates”, Phys. Rev. A 71, 023606
(2005).

e P. Massignan, G. M. Bruun, and H. Smith, “Viscous relaxation and col-
lective oscillations in a trapped Fermi gas near the unitarity limit”, Phys.
Rev. A 71, 033607 (2005).

The fifth chapter covers the results obtained in collaboration with Dr. Yvan
Castin (LKB-ENS, Paris). This material will be submitted for publication as:

e P. Massignan and Y. Castin, “3D Anderson localization of matter waves
by scattering off atoms in a lattice with a confinement-induced resonance”.
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Chapter 1

Introduction

One of the most active areas of contemporary physics is the study of atomic gases
under conditions when quantum effects become important. As the particles get
so cold and dense that the associated thermal de Broglie wavelength becomes
comparable to the interparticle separation, a classical description breaks down
and quantum mechanics predicts that the two separate classes of atoms, namely
bosons and fermions, behave in strikingly different ways. The progress made by
cooling techniques in the last 20 years opened enormous experimental possibili-
ties to explore the quantum regime, and a major breakthrough was announced
in the summer of 1995 when almost simultaneously three groups at JILA, MIT
and Rice University reported Bose-Einstein condensation in a gas of bosonic
alkali atoms (respectively, 8"Rb [1], 2Na [2] and "Li [3]). Since then, an amaz-
ing wealth of beautiful experiments and theoretical papers have appeared, and
the field has never stopped growing!. A concise introduction to the research on
ultracold gases is given in the following few pages. The reader interested in a
more historical, complete description and in an exhaustive list of references can
refer to two recent monographs dedicated to this subject [4, 5].

A first generation of experiments investigated static and dynamic properties
of bosonic gases. Among the former, we might include the effects of interactions
on the critical temperature for condensation and on the shape of a trapped
cloud. Among the latter, intensive studies have been performed to show the
formation of beautiful interference fringes, to characterize collective modes of
oscillation, to study the cloud expansion and the propagation of sound waves,
to investigate non-linear phenomena such as soliton propagation and matter-
wave amplification. Many groups successfully imparted a controlled amount
of angular momentum to the clouds, and large triangular arrays of quantized
vortices were imaged and studied in depth.

In current experiments, laser cooling techniques make it possible to refriger-
ate the atomic gases to strikingly low temperatures, but these are still insufficient
to enter the quantum degenerate regime. A second stage, which allows to reach
the critical temperature at about ~ 0.1uK, always consists of a sort of evap-
oration, during which the most energetic atoms are allowed to leave the trap
and the remaining particles thermalize at a lower temperature through elastic
two-body collisions. This cooling procedure however does not work efficiently

1Up to now, quantum degeneracy has been observed in dilute atomic and/or molecular
gases of H, He*, Li, Na, K, Cr, Rb, Cs and Yb.
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for identical fermions, since low-energy scattering is forbidden by the antisym-
metrization principle (see Chap. 2, where the theory of low-energy two-body
scattering is analyzed in detail), and a more complex path had to be devel-
oped. Degenerate fermions have nonetheless been obtained, about five years
later than their bosonic counterparts, employing either two different hyperfine
states of the same fermionic element, which are simultaneously evaporated, or
sympathetic cooling of fermions by collisions with an evaporatively cooled gas
of bosons. Early results from this new generation of experiments on fermions
showed the effects of the different quantum statistics governing particles with
either integer or half-integer spin. While in the degenerate regime bosons tend
to gather or “condense” in the lowest energy state available (the ground state
of the trap), fermions occupy all possible momentum states in the Fermi sphere
up to the Fermi energy ep, irrespective of the geometry of the trap. This is
seen very clearly upon free expansion of the gas from cigar- or pancake-shaped
harmonic traps: fermionic clouds expand isotropically, while bosons maintain
“memory” of the geometry of the trap in their density profile during expansion.

Atomic gases have the uncommon property of being extremely flexible sys-
tems, since interactions, dimensionality and thermodynamic variables such as
density and temperature can be tuned almost at will. Quite remarkably, theory
and experiments progress at the same pace, constantly challenging each other,
and beautiful results have been obtained (see Fig. 1.1).

Some of the most common THEORETICAL CONCEPTS employed in this
field are presented here below.

e Two-body, low energy scattering theory deserves a special mention.
Indeed, when dealing with quantum degenerate gases, the densities in-
volved are much smaller than the ones encountered in solid state physics.
Typical values coming here into play are n ~ 10310 particles/cm?, 8 or-
ders of magnitude smaller than the corresponding figure for electrons in a
metal, liquid helium or common solids. Such small densities are necessary
to avoid inelastic three-body scattering events, that would lead to losses
and molecule formation. Neutral alkaline atoms interact with (induced
dipole-dipole) van der Waals forces, for which the characteristic quantum-
mechanical length scale is typically R ~ 0.1-10nm. In the experiments
of interest here, the gases are therefore very dilute in the sense that the
interparticle distance n~'/3 is much larger than the characteristic length
of the force between the atoms,

nR® < 1. (1.1)

Collisions involving more than two particles are then extremely rare and
two-body scattering theory provides an excellent description of the micro-
scopic dynamics. When the density is so low, one expects that the tran-
sition to the quantum regime will happen at incredibly low temperatures:
equating the thermal de Broglie wavelength

2mh?
A = 1.2
T mkT (1.2)
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Figure 1.1: Gallery of ultracold memorabilia: (from left to right and top to
bottom) the birth of a condensate, array of vortices, formation of superradiant
peaks and a cloud performing quadrupole oscillations. Images from the website
of Wolfgang Ketterle’s group at MIT (http://cua.mit.edu/ketterle_group).
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to the interparticle distance n~'/3, one indeed finds Tc ~ 10~7-10~°K
(for a comparison, the critical temperature for the superfluid transition in
liquid helium is T = 2.2K , and the Fermi temperature for electrons in
a solid is Tr ~ 10*-10°K). To reach degeneracy, the atoms in the gas are
then cooled from room temperature, where particles move at velocities of
a few hundred meters per second (the speed of an airplane), all the way
down below T where they have typical velocities of order centimeters
per second. As we will see in detail in Chap. 2, at such low-energies
collisions can be appropriately modelled by a contact potential, isotropic
in space and whose strength is governed by a single observable, the s-wave
scattering length a, that can be accurately determined from a variety of
independent experiments.

Static and dynamic properties of dilute gases of bosons at T' <« T¢ can be
successfully extracted from a relatively simple differential equation, that
has the form of a Schrédinger equation with a non-linear mean field term:
L oY h2v?
th— = |—
ot 2m

+ V(r,t) + Up |9 | 0. (1.3)

This is known as the Gross-Pitaevskii (GP) equation and describes the
dynamics of a complex order parameter ¢ (r,t) whose modulus squared
is interpreted as the density of condensed particles, n(r,t) = |i(r,t)|?,
all occupying the same quantum state. The strength of the mean field
interaction is parameterized by the constant Uy, that contains all the
informations about low-energy scattering, while V (r, ¢) takes into account
the external potential.

Writing the order parameter as 1) = y/nexp(i¢), the GP equation can be
separated into real and imaginary part to obtain the equations of quantum
hydrodynamics, that have been applied in investigating sound waves and
collective modes of oscillation of condensed clouds, as well as the static
properties of trapped condensates.

Kinetic theory has been intensively used to describe non-condensed sys-
tems (bosonic gases above or close to the critical temperature, or fermions
in their normal state) in a vast collection of problems, including studies of
cooling processes, relaxation of temperature anisotropies, and characteri-
zation of collective modes.

Many of the model potentials “dreamed” of by theorists such as double
wells and periodic lattices can nowadays be realized experimentally (see
below). When the potential is sufficiently deep to ensure weak site-to-site
coupling (tight-binding regime), discrete models prove to be very useful in
capturing the main physical features of these realizations.

Recent technical developments allowed to enter the regime of strong in-
teractions, where the diluteness condition (1.1) is violated: in this case,
quantum many-body theory is the natural framework to employ, and sys-
tematic diagrammatic expansions can be performed to study e.g. shifts
of critical temperature and mean field energies, or superfluidity effects
in fermionic clouds. Powerful numerical methods such as Monte Carlo
calculations are also often employed in this regime.
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Atoms are strongly influenced by both electric and magnetic fields, and dur-
ing these years of rapid evolution a combination of clever ideas and careful
tailoring has made it possible to develop an amazing EXPERIMENTAL TOOL-
BOX for flexible manipulation of ultracold gases. Here below a list of some of
these tools is given.

e The energy of an atom in a magnetic field depends to a good approxi-
mation linearly on the external field, and inhomogeneous fields are widely
used to realize magnetic traps for cold clouds. Only configurations with
local minima can exist in the absence of electric currents, and therefore
only states with negative magnetic moment (so-called low-field seekers,
since AE = —uB) may be trapped magnetically. Many configurations
have been explored, and by now very smooth harmonic traps can be re-
alized with large control over the depth of the potential and the relative
strength of the confinement in the three orthogonal spatial directions.

e A laser whose frequency is slightly detuned with respect to an atomic tran-
sition constitutes a strong potential for the atoms. In particular, particles
are attracted towards regions of intense red-detuned light and repelled
from blue-detuned ones. Based on this principle, tightly focused red-
detuned lasers are currently used as optical traps which are insensitive to
the magnetic state of the cloud, and in particular can trap together many
different hyperfine states of the same atom. Similarly, blue-detuned sheets
of laser light have been employed as “knives” to neatly split a cloud into
two spatially separated components which interfere upon release from the
trap, as well as to create localized disturbances and study the propagation
of sound waves in the cloud.

e The optical and magnetic traps used to confine the atoms can be de-
formed all the way from isotropic to elongated in either one or two spatial
dimensions, giving respectively spherical, cigar- or pancake-shaped clouds.
When the anisotropy is so extreme that both the chemical potential 2 and
the thermal energy kT are smaller than the spacing between the discrete
levels of the transverse (axial) confining potential, the atoms are confined
to the ground state of the trap in the radial (axial) direction and the dy-
namics of the system is effectively reduced to one dimension (two dimen-
sions). Reduced dimensionalities have attracted a lot of interest recently,
and many experimental and theoretical efforts concentrate on the realiza-
tion and characterization of strong interactions in one dimension, the so
called Tonks-Girardeau regime, and of the Kosterlitz-Thouless transition
describing the formation of vortex-antivortex pairs in two dimensions.

e Standing waves obtained by retroreflected laser beams generate poten-
tials, often referred to as optical lattices, which are constant in time, si-
nusoidally modulated in space, and exempt of any defect. One-, two- and
three-dimensional configurations can be realized, allowing one to split a
cold cloud into ordered arrays of hundreds of identical pancakes, tubes, or
point-like smaller clouds. The strength of the periodic potential is propor-
tional to the intensity of the laser, and as the latter is gradually increased
one can explore the interesting crossover regime between a conductor and
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an insulator, i.e. the transition between coherent well-to-well tunneling
and isolated, incoherent wave functions localized at each lattice site.

e The effective interactions between the atoms can be accurately tuned with
the aid of an external (magnetic or electric) field. This technique takes
advantage of so-called Fano-Feshbach resonances, that occur whenever a
bound molecular level is shifted by the external field to resonance with the
total energy of two scattering particles. Sweeping the external field, the ef-
fective interaction may be tuned to explore regions of attractive, repulsive
or vanishing interaction. In particular, one can enter the appealing regime
of strong interactions, that opens up when the magnitude of the scattering
length becomes larger than the mean distance between particles. Under
these conditions bosons undergo frequent inelastic three-body collisions
and are very quickly lost from the trap, but very long lifetimes have been

measured for mixtures of two hyperfine states of fermionic atoms?.

In the investigations that constitute the content of the present thesis, a wide

range of the experimental tools and theoretical methods presented above has
been combined to attack a set of open problems in the theory of ultracold gases.

1.1 Problems addressed in the thesis

Motivated by new ideas and unexplained experiments, during the course of my
Ph.D. studies I have had the pleasure of investigating various problems in the
field of ultracold atoms which, as detailed in the previous Section, appears today
extremely rich and rapidly developing.

A basic tool forming a common ground for all these topics is the theory of
two-body, low-energy scattering: it is presented in detail in Chap. 2, covering
the basic zero-energy limit, the derivation of the effective contact interaction,
and the more advanced treatment describing the extensions of the theory needed
when stronger interactions or sizeable energies come into play.

In the following pages, I will introduce the reader to the three main subjects
on which my studies have focused. Each of the topics is then analyzed in detail
in Chaps. 3, 4 and 5, respectively.

Ions in a Bose-Einstein condensed gas

In the helium liquids, the measurement of properties of ions has been a valuable
probe for understanding the behavior of the liquid. Charged particles have been
employed extensively to put in evidence vortex lattices in rotating *He and to
elucidate scattering processes in 3He. The interaction of a positively charged
ion with the neutral liquid is so strong that helium solidifies around each ion,
forming composite structures known as snowballs. Intense studies focused as
well on electron bubbles, i.e. the large depletions that appear around single
electrons in the liquid.

The first experiments on ions in an ultracold atomic gas (3”Rb) have been
reported by the cold atoms group in Pisa [6], and more experiments are planned

2The Pauli principle stabilizes two-species fermionic gases against three-body losses, since
a collision between three particles would necessarily bring in a very limited spatial region two
fermions with the same set of quantum numbers.
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in the near future [7], but to date there is little theory concerning ions in such
gases [8].

The interaction between an atom and an ion at large distances is due to the
polarization of the neutral atom by the ion. We are interested in the properties of
a positively charged alkali ion immersed in an otherwise uniform Bose-Einstein
condensate. The atom-ion interaction is strong, in that it can support many
two-body bound states, and the typical energy scale associated with it (~ 1K)
is comparable to the chemical potential under common experimental conditions:
a single ion can substantially perturb the density profile of the condensate in
its surroundings. To answer the question of how big this effect is, we will
first demonstrate by a thermodynamic argument that in the limit of low bulk
condensate density the number of atoms associated with each ion is given by
the ratio of the atom-ion and atom-atom scattering lengths. This approach
indicates that AN is of order 10-100, either positive or negative.

For higher gas densities, we extract the asymptotic behavior of the solutions
of the Gross-Pitaevskii equation (1.3), and solve it numerically with a potential
that closely resembles the ionic one. We will find that, with increasing mean field
interaction, pairs of solutions merge and disappear, which leads to discontinuous
changes in AN. To clarify this point we analyze the simpler problem of an
interacting gas in a 3D spherical square well and show that, in the dilute limit,
there exist 2vg+1 solutions that connect to a constant density at infinity (where
vg is the number of bound states of the Schrodinger equation for the same
potential). As the asymptotic density increases, pairs of solution with the same
number of nodes become degenerate and disappear, until at very high density
there exists only a node-less solution. In Appendix A we present the analytic
solution of a related problem, an interacting gas in a square well potential
in one dimension, and show that it behaves qualitatively differently from the
ionic potential, in the sense that solutions continue to exist for arbitrary high
external density. For the case of the ionic potential, the disappearance of states
implies a discontinuous behavior that shows up at bulk densities in the current
experimental range and should therefore be observable.

Our results have previously been published in [9] and are here illustrated in
Chap. 3.

Viscous relaxation and collective modes of interacting Fermi
gases in the normal phase

Trapped ultracold clouds offer the exciting prospect of examining the effects
of atomic interactions with unprecedented accuracy and flexibility. Particu-
larly appealing is the study of two-component mixtures of fermions, since those
are characterized by very long lifetimes even in the strongly-interacting regime.
When the scattering length for the interspecies potential is small and posi-
tive so that (kpa)~' > 1, there exists a two-body bound state and theory
predicts that at 7" = 0 fermions combine together to form a BEC of tightly-
bound bosonic molecules. In the opposite limit of small and negative scattering
length, (kpa)fl < —1, many-body effects provide an attractive potential and a
BCS-superfluid of loosely bound pairs should emerge. The interactions between
atoms can be varied almost at will, which allows one to study the intriguing
problem of a two-component Fermi gas in the BEC-BCS crossover region where
—1 < (kpa)~" < 1. Many experiments have been reported in all these regimes,
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providing clear evidence for a molecular BEC on one side [10], and for conden-
sation of pairs [11] and the existence of a pairing gap [12] on the other side. In
a particularly recent and remarkable experiment [13] a vortex lattice has been
observed all across the resonance region, finally demonstrating the long-debated
superfluidity of the fermionic gas: the authors give also sound evidence that su-
perfluidity in the strongly-interacting regime is very stable against mismatch of
the Fermi surfaces (i.e. imbalance in the population of the two spin components)
and that a transition to the normal state is observed only when the difference
in chemical potentials between the two species becomes larger than the pair-
ing gap. The nature of the system in the cross-over regime has been object of
intense studies in the past decades [14] and is still very actively discussed.

The measurement of both the frequency and the damping of collective modes
provide an important spectroscopic tool probing the many-body dynamics of
atomic gases. As an example we recall that the frequency and the damping of the
oscillations give information on typical relaxation rates in the system, and allow
one to distinguish between collisionless and hydrodynamic regimes. Even though
the collective mode spectra of a normal gas in the hydrodynamic regime and
that of a bulk superfluid gas are identical [15, 16, 17], the damping of the modes
as a function of temperature should make it possible to distinguish between the
two regimes [18]. Recent papers from the experimental groups in Innsbruck
and at Duke University reported measurements on the collective modes of a
two-component Fermi gas (°Li) close to the unitarity limit (kp|a|)~! < 1 with
somewhat surprising and unexpected results [18, 19, 20, 21]. In particular, the
frequency measured for the transverse mode is close to the value predicted by
hydrodynamic theory.

In Chap. 4 we address the problem of characterizing the spectrum of collec-
tive modes of a two-component Fermi gas in its normal phase. Our starting point
is a Boltzmann equation with interaction effects included in both the streaming
terms and the collision integral, through a mean field added to the external
potential and an energy-dependent cross section in the collision integral. We
first find an expression for the viscosity of a classical uniform gas and show how
interactions modify its temperature dependence. The result is used to identify
a viscous relaxation rate that sets the scale of typical collision times in the gas.
We then consider a trapped gas, and extract the frequency and the damping
of the low-energy collective modes as a function of temperature and interaction
strength through a variational solution of the Boltzmann equation. Most of the
technical details of the derivation are given in Appendix B. We finally com-
pare our findings with the measurements reported in [18, 19, 20, 21], pointing
out that classical hydrodynamics cannot be applied to describe the transverse
oscillations measured in the above-mentioned experiments, and identifying the
high and low temperature regions where collisionless behavior is expected. Our
results have previously been published in [22].

3D Anderson localization of matter waves

The recent advances in the manipulation of ultracold gases have made it possi-
ble to employ these to accurately simulate many systems in condensed matter
physics. As examples, we may mention the exploration of the superfluid to
Mott-insulator transition [23] and the already cited BEC-BCS crossover. Disor-
der plays an important role in the theory of solid state, affecting in a substantial
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way the transport properties of various systems. Special attention has in the
past been dedicated to studies of flow of liquid helium in porous media, light
propagation in strongly-scattering powders and electron transport in metals in
the presence of impurities [24, 25, 26]. It looks therefore interesting to intro-
duce a controlled disorder in the experiments with ultracold atoms, in order to
provide a closer modelling of realistic systems of condensed matter physics.

Particularly appealing is the possibility of studying a non-interacting mat-
ter wave exposed to static disorder and looking for the presence of localized
eigenstates, that is stationary states with a square integrable wave function at
an energy where the classical motion is not bounded spatially. After the im-
portant work of Anderson [27], it is indeed expected that disordered potentials
can generically lead in 3D to a quantum transition, a macroscopic number of
localized states being present at low energy. Such a phase transition in 3D is
difficult to observe, as it is sensitive to decoherence and wave absorption effects,
and requires a mean free path of the wave smaller that the wavelength. Ander-
son localization of light has been long sought in semi-conductor powders [28],
but no direct evidence was obtained in 3D for matter waves. Ultracold atoms
are good candidates in this respect, due to their weak coupling to the environ-
ment and to the possibility of tuning their interactions virtually to zero with
a Feshbach resonance. An open problem is however to know if strong enough
disorder can be introduced in these gases to lead to 3D Anderson localization
with reasonably short localization lengths.

A natural way to produce a disordered potential in atomic gases is to use
the speckle pattern of a laser beam [29]. Many experiments on Bose-Einstein
condensates (BECs) in 1D random optical potentials have very recently been
reported [30, 31, 32, 33|, and they provide evidence for disorder-related effects
such as fragmentation of the condensate, suppression of diffusion, frequency
shifts and damping of collective oscillations. Genuine Anderson localization in
1D, in the non-interacting regime, has not been reported yet in these experi-
ments, and the implementation of the disordered optical potential in 3D remains
to be done. Also the theoretical analysis of matter wave localization in a speckle
pattern in 3D in the strong localization regime has not yet been performed in
detail.

An alternative method to realize a disordered potential was proposed in
[34]: a matter wave, made of atoms of a species A, scatters off a set of atoms of
another species B that are randomly trapped at the sites of a deep optical lattice
with a low filling factor (see Fig. 5.2). As we will choose the lattice to be very far
detuned for the species A, the matter wave moves unaffected through the optical
lattice, and interacts only with the B atoms: this excludes classical localization
effects in local potential minima (that is a major drawback in the experiments
with speckle potentials). The disorder can be made very strong, since (i) the
correlation length of the disorder can be as small as 0.5um (the spacing of the
optical lattice), and (ii) the scattering cross section of the matter wave off a
single atom can be made as high as allowed by quantum mechanics (the so-
called unitarity limit) by use of a A — B interspecies Feshbach resonance, which
make it possible to dramatically reduce the mean free path of the matter wave.
Furthermore, as we shall take advantage of, this model allows a straightforward
exact numerical analysis even in 3D, when B atoms are modeled as fixed point-
like scatterers, as is known for light waves 35, 36].

It is the 3D version of this scheme that we analyze in Chap. 5. After a



16 Introduction

detailed presentation of our model and its practical implementation, we show
numerically that it leads to the appearance of a large number of localized states
for a range of parameters accessible in present experiments, provided that the ef-
fective coupling between the matter wave and a single scatterer is large enough.
One of the Sections is dedicated to the quantitative description of the scattering
between the matter wave and a single trapped scatterer, and to the discussion
of the confinement-induced resonances (CIRs) thereby arising: we show indeed
that arbitrarily large effective coupling constants can be obtained. Possible
strategies of observation of the presence of Anderson localization are also dis-
cussed. Details about the calculation of the Green’s function of a particle in
a box and about an integral equation appearing in the text are reported in
Appendices C and D. The results presented here will soon be submitted for
publication [37].



Chapter 2

Cold two-body collisions

The purpose of this Chapter is to describe in a quantitative way how two par-
ticles deviate, or “scatter”, from their original trajectory after a collision. We
will consider only elastic scattering, i.e. energy-conserving processes that do not
alter the internal state of the particles, and we will assume that two distin-
guishable particles interact through a central potential U (r). The motion of the
center-of-mass of the pair is described by a plane wave and can be taken out
of the problem by switching to a reference system where the center-of-mass is
at rest. The two-body problem is in this way reduced to the scattering of a
single particle of mass u = myma/(m; + ms) by a stationary potential, and is
described thoroughly in standard textbooks [38, 39, 4].

The wave function for the relative coordinate in a state of definite energy
E = h2k?/2p is the sum of an incoming plane wave and an outgoing scattered
wave:

P(r) = ™ 4 (). (2.1)
The plane wave is normalized so that the current density is equal to the plane
wave velocity v = fik/m. At large distances the outgoing scattered wave be-
comes spherical, and the wave function assumes the asymptotic form

ezkr

P(r) ~ T + fy

Due to the spherical symmetry of the potential, the solution has rotational
symmetry with respect to the direction of the incident plane wave (which we
take to be the z direction) and the scattering amplitude fj depends only on the
angle 6 between the incoming and the outgoing relative momenta. The latter
property allows to expand the wave function for the relative motion on the basis
of Legendre polynomials P;(cos ),

(2.2)

” .

P(r) = i APy (cos @) Ry (r). (2.3)

=0

The radial wave functions Ry, (r) satisfy the equation

d2Rkl (7“) 2 del (T)
dr2 r dr

n [sz B l(l:; 1 ;_ZU(T) Riu(r) =0, (2.4)
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and at large interparticle separations, where we can neglect both the centrifugal
barrier and the potential, they have the asymptotic form

1
Ry (r) ~ . sin (kzr — gl + 61) (2.5)

expressed for each angular momentum component in terms of an appropriate
phase shift §;. The coefficients A; are fixed by comparing (2.3) with (2.2). Using
the asymptotic expansion for a plane wave (valid at large distances)

k:i ; (21 + 1) Pi(cos 6) sin (kr — gl) (2.6)

and imposing that the solution contains only outgoing spherical components,
one finds '
Ay =i (21 4 1)

and

fe(6) = ﬁ > (@1+1) (¥ — 1) Py(cos). (2.7)
=0

The probability per unit time that the scattered particle will pass through a
surface element dS = r2dQ is vdS | fx|?/r?, and its ratio to the current density
in the incoming wave and to the solid angle df2 is the differential cross section

RO 2.8

The total scattering cross-section is obtained by integrating the former expres-
sion over the whole solid angle:

+1
o=2r d(cos 0)| fx(0)]?. (2.9)
-1
Using the explicit expression for the scattering amplitude (2.7) and the orthog-
onality relation for the Legendre polynomials

+1
2
/ d(cos @) Py, (cos0) P, (cos ) = if m =n, 0 otherwise

. om + 1

the total scattering cross-section can be expressed in terms of the phase shifts:

o= g (21 + 1) sin? 6. (2.10)
1=0

The phase shifts have a pronounced dependence on energy, and to describe
atomic scattering at low energy it is often sufficient to include only the s-wave
(I = 0) contribution. In fact, when dealing with collisions between identical
bosons or between two fermions in an antisymmetric spin state, scattering in odd
partial waves (p, f, etc.) is prohibited by parity requirements. In addition, for a
potential decreasing in the far field with a power-law dependence, U(r) ~ r—",

it is shown that [38]

E2H1 i 1 < (n—3)/2
o O({ kn—2 e(lse. / (2.11)
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As a consequence, in the limit £ — 0 and for any potential decreasing faster
than 1/r® we have §; < dy for any [ > 0.
Some algebra shows that the | = 0 term in (2.5) can be recast as

sin kr n sin 8 cos kr
kr k ro’

Ryo(r) =~ cos dg
and in the limit of zero energy we obtain the asymptotic form
w12 (2.12)
T

In the latter equation, we have introduced the scattering length a, defined for
small k in terms of the s-wave phase shift by

kcot dg = fé. (2.13)

When ka — 0, comparing (2.2) with (2.12) we find that the scattering amplitude
is simply related to the scattering length by

[k = —a. (2.14)

In the same limit we have dy/k ~ —a and the total cross section for distinguish-
able particles is given by
o = 4ma’. (2.15)

In case the particles are indistinguishable, their wave function must be symmet-
ric or antisymmetric under interchange of their relative position depending on
whether the particles are bosons or fermions. The two directions specified by
the polar angles 0, p and m— 6, 4+ 7 must be identified, and the scattering cross
section takes the form

2 = 10) £ felm— O)P, (216)

where the + (—) sign applies to bosons (fermions). The total s-wave cross
section is obtained by integrating the latter expression over all distinct final
states. To avoid double counting one has to take into account only half of the
solid angle, i.e. 0 < ¢ < 27 and 0 < 6 < 7/2, and finally finds

o = 8na® (2.17)

for the case of identical bosons, while the total s-wave cross section vanishes for
identical fermions.

The scattering length a can be determined accurately from a variety of exper-
iments, e.g. photoassociative spectroscopy or analysis of Feshbach resonances,
and plays a central role in the theory of cold collisions. When only low energy
states are involved in a collision process, we will see that the scattering length is
the only parameter entering an effective interaction that can be substituted for
the full two-body potential. This is very appealing, since the original potential
is deep and has a complicated structure, that cannot generally be calculated
analytically.
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To derive the effective interaction, it is useful to analyze the problem in the
momentum representation, where the Schrodinger equation becomes an integral
equation for ¢(k):

h2k/2 , dk// , " oo h2k2 ,
)+ [ G0 = ). (219

U (k) being the Fourier transform of the potential and E = h?k? /2y the energy
eigenvalue. The wave function (2.1) reads

P(k') = (27)°6(K' — k) + s (K) (2.19)
and satisfies the integral equation®

dk//
(27)?

The former expression can be recast in the alternative form

UK — K)o (K").  (2.20)

2u 2u

<h2’“2 hgk/g) oo (K) = U(K — k) + /

h2 k2 h2 le
Q/JSC (k/) = ( 2 -
1% 2p

+ z‘0+) ) T, k). (2.21)

The first term on the right hand side of (2.21) is the two-particle retarded Green’s
function G, and an infinitesimal imaginary part has been added to enforce the
boundary conditions of outgoing waves. The second term, the (on-shell) scat-
tering matriz T, satisfies the Lippmann-Schwinger equation

, , dk// , y h2 k2 h2 kllZ o -1 "
Tk, k)=U(k k)+/ (271_)3U(k k )( o o + 10 > Tk" k),
(2.22)
or, more formally,
T=U+UGT. (2.23)

The scattered wave can be extracted from (2.21). We are only interested in the
far field region, and we will make the approximation T'(k’, k) ~ T'(0, k) since the
important Fourier components are those for which k’ < 1/r. Using the Fourier
transform of the Green’s function

2,U/ dk/ eik/»r u eikr
Glr) = 2- S 2.24
) = 72 / QrpB k2 — K2 +40T  2nh? ¢ (224)
we find
U eikr
Ysc(r) = _QWHQT(O’k) - (2.25)

Comparing (2.1) and (2.2) with (2.25), we see that the scattering amplitude is
related to the 7" matrix by

M
2mh?

We use (k'? — k2)6(k’ — k) = 0, where the equality is to be intended in the parlance
of distribution theory, i.e. [ dk¢(k)(k"? — k?)§(k’ — k) = 0 for any test function $(k) with
bounded support not having a singularity in k = k'.

fe =

T(0,k). (2.26)
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The Lippmann-Schwinger equation allows one to obtain an effective potential
that can be used to describe low-energy collisions in a dilute gas. In order to see
how, let us split the integral appearing in (2.22) into two parts, first summing
over states with energy greater than E. = h%k?/2u, and then summing over
states with lower energy®. The first summation defines a quantity Ug, (k’, k)
that satisfies

w

~ dkl/ h2 k2 h2 k”2 -1 ~
Ug, (K, k) =Uk -k +/ Uk k" ( — +i0+) Ug, (k" k)
( ( ) K>k, (27) ( ) 2p 2 {

and depends explicitly on the specific energy cut-off E.. The second step gives
the T" matrix in terms of the effective interaction U:

—1
T k) =Ug, (k’,k)+/ + z‘0+) T(k" k).

dk// ~ h2k2 h2k“2
K<k, (2m) < -

k/ k//
UEC( ) ) 2,“/ 2,“/

This last equation shows that, if one replaces the bare interaction U by UEC,
the full 7" matrix can be obtained including only a limited subset of low-energy
states. If we let . — 0, the effective interaction reduces to the 7" matrix, and
comparing (2.14) to (2.26) we obtain

- 2mh?
Uo = lim Ug,(0,0) = T(0,0) = =a (2.27)
c— 12

In the zero energy, long wavelength limit, the effective s-wave interaction de-
pends on a single parameter, the scattering length. If the typical length over
which the two-body potential is appreciably different from zero is small com-
pared to the interparticle distance, interactions in a cold gas can be accurately
described by a s-wave contact interaction commonly referred to as the Fermi
pseudopotential, whose strength is given precisely by the effective interaction Uy
calculated above:

a(r...)

U(?‘) = UO or

i(r). (2.28)
r=0
Wave functions with s-wave symmetry diverge in three dimensions at most like
1/r in r = 0, and the derivative term has been introduced to regularize the
contact potential at the origin, i.e. to give a definite meaning to the combina-
tion U(0)¥(0). By introducing the pseudopotential (2.28), the whole effect of
the interaction between the two particles is replaced by a vanishing potential
supplemented by a boundary condition for the logarithmic derivative of r at
the origin:

1 _ 1 (2.29)
ry o or |,_, a )

2Using a formal notation, we write G = G~ + G<, and define an effective interaction U
that satisfies
U=U+UG-U.
Multiplying on the left by U~! and on the right by 0*1, we get U™1 = U~!+ G>. From
(2.23) we have U~! = T—! + G, and equating the right hand sides of the two latter equations
we find T as a function of U:
T=U+UGT.
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2.1 Energy-dependent scattering

For strong interactions or small interparticle separations, energy plays an im-
portant role in determining scattering properties: consequently, the theory pre-
sented in the preceding Section must be improved. When the scattering length
|a| becomes larger than 1/k the simple relation fi = —a is no longer valid and
the scattering amplitude becomes energy-dependent. At the same time, the in-
troduction of a contact potential can be justified only in the low-density limit.
In this Section we first find the lowest order energy corrections to the scattering
amplitude and cross section, then show how energy shifts due to interparti-
cle interactions are related to phase shifts, and finally present a modified GP
equation that takes into account the non-zero range of the effective atom-atom
interaction.

The energy-dependence of the s-wave cross-section is simply found keeping
the only [ = 0 term in Eq. (2.7), resulting in®

- 1 _ 1
"~ keotdy —ik  a~l4ik’

Tk (2.30)

Alternatively, the Lippmann-Schwinger equation can be expanded in increasing
powers of the interaction U and formally re-summed to find

1

T = e = .
U+UGU +UGUGU + Ul—GU

(2.31)

For the special case of the pseudopotential (2.28), the T matrix admits the
analytic form
27h? 1

TN ==

(2.32)
and comparing with (2.26) we again find the scattering amplitude (2.30). The
differential energy-dependent cross section for distinguishable particles is given
by

do a®
- - 2.
o) = T (2:33)
in accord with the optical theorem
4
o= ""Im fy, (2.34)

k

that links the total cross section to the scattering amplitude®. As stated in
Chap. 1, Feshbach resonances can be exploited to tune the scattering length to
arbitrary values: the energy-dependence of the scattering cross-section must be
taken into account whenever one enters the regime of strong interactions where
kla|] Z 1, as is evident from Eq. (2.33). When |a| becomes much bigger than k!
the cross section saturates to the value o = 47/k? and is said to be “unitarity

limited”.
(e e . 2
COt(S:Z(m) :Z(1+8216771)

4If higher partial waves are included, the theorem is still valid provided f, is substituted
by f%(0), the scattering amplitude in the forward direction.

3We use
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At sufficiently high energies kcot dy is no longer a constant, and the first
correction to Eq. (2.13) is generally written as [39]

1 1
kcotdyg = —— + §rek:2 + o0 (k?), (2.35)
a

that defines the effective range r.. This formula is correct for short range poten-
tials falling off at infinity faster than any power of 1/r, and has been extensively
used in nuclear theory. When the effective range is taken into account, the scat-
tering amplitude becomes

1 a
" keotdg—ik  1+ika—arck?/2

Tk (2.36)

From the latter equation, we deduce that at non-zero energies a contact potential
(for which r. = 0) reproduces the correct scattering amplitude as long as

klre| < 1. (2.37)

For alkali atoms typically r. ~ a and the latter requirement coincides with the
low-energy condition k|a| < 1. As long as Eq. (2.37) is satisfied, the contact
potential can be used to model interparticle interactions even in presence of a
Feshbach resonance, since r. is unaffected by the rapid divergence of a as a
function of the external field.

The case a — 0 deserves special mention: expanding (2.36) for small values
of the scattering length, one finds

1
fr = —a+ika® — §rea2k32 +0(a?). (2.38)

It has indeed been shown analytically for both an attractive square well [40] and
a van der Waals interaction [41] that the effective range diverges as a — 0 in
such a way as to keep constant the quantity 7.a?, the prefactor of k% in (2.38).
The behavior of a and r. are depicted in Fig. 2.1 for the square well potential.
In Sec. 5.3 we will find a similar divergence of r. when solving the problem of
a free particle colliding with a trapped scatterer (see Fig. 5.11). For a — 0
the condition (2.37) for the applicability of a contact potential should then be
substituted by

k*|rea®| < |a|  (when a — 0). (2.39)

We turn now to the possibility of including non-zero range effects in the GP
equation. On general grounds, it is possible to show that mean field energy
shifts are proportional to phase shifts (see e.g. [42]). To understand how energy
shifts are related to interactions, a simple example can be useful. Let us consider
two bosons enclosed in a spherical box of radius R (in the relative coordinate).
The exact wave function for two non-interacting particles is of the form

Ty = Asm(ﬂ, (2.40)

r
where the boundary condition of infinite walls at » = R implies that kg R = nm,
and normalization to unity requires that A=? = 27 R. If we now turn on any
interaction (with the only condition that it vanishes at infinity faster than r~2),



24 Cold two-body collisions
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Figure 2.1: Scattering length a, effective range r. and r.a? for a 3D attractive
square well of width R and depth —Vj, plotted as a function of the adimensional

parameter v = \/—VymR2/h2.

the asymptotic wave function will have the same form, but will be phase shifted:

U = Aw_ (2‘41)

r

The new boundary condition is kR 4+ 6 = nm and implies a wave vector shift
Ak =k — kg = —6/R. The energy shift is then given by

h2 h2 1) 2rh? 1) 2
= k. =" k. [=-=) = — ) |T . 2.42
ap=Tp an= g (L2) <20 (L) oy (2.42)

This simple example shows the general feature that the energy shift due to
interparticle interaction is proportional to the phase shift 4.
For small phase shifts § ~ tand — tan®§/3 and we find:

f% =a- (1 - g2k?) (2.43)
where we have defined
g2 = %aQ - %are. (2.44)
The energy shift is then given by
_ 27h%a

AFE

[1— g2k®] [Wo(0)[*. (2.45)
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As shown in [43, 44], the energy shift can be inserted in the energy functional
to obtain a modified GP equation containing a derivative term:

2
m%\p - {mw LV (r) + Uy {|\I:|2 + gaV2 (|\1:|2) }} v (2.46)

It is interesting to note that in the case of hard spheres of diameter a the
boundary conditions on the surface of the sphere impose § = —ka and r, =
2a/3: as a result the g2 coefficient vanishes, in accord with the fact that §/k is
manifestly independent from the energy. We note in passing that in Ref. [44]
the authors started from the erroneous assumption of proportionality between
forward scattering amplitudes and energy shifts, and consequently obtained the
wrong result go = a® — ar./2.

Starting from the ideas above, Roth and Feldmeier [43] have performed a
detailed analysis of the problem of constructing an energy-dependent interac-
tion. They expanded the phase shift corresponding to each angular component
in increasing powers of k2,

o0 1 5
Gi(k) = KLY ek, (2.47)
12
v=0

and developed a contact interaction that reproduces the correct two-body energy
shifts taking into account all partial waves via derivative couplings.

Special care needs to be taken when employing an effective range expansion,
since atomic potentials in general are not short-ranged: as shown in [45] the
expansion given in Eq. (2.35) is strictly correct only for potentials that go to
zero at least as fast as the Van der Waals one (r7%). As an example, they
find that for two particles interacting through a potential with a 1/r* tail the
expansion of the s-wave phase shift contains already a term linear in k x VE,

B3

22 k+ Ak*In (kBs) + BE* + O (k?) (2.48)

1
kcotd = —— +
a

(where (4, A and B are constants with dimensions of a length) and the definition
of an effective range itself is meaningless for this potential.






Chapter 3

Static properties of ions in
atomic BECs

The idea of studying properties of ions inside a Bose-Einstein condensate came
to us thinking of what has been done in the 1960s in the context of liquid helium,
where ions proved to be very useful tools to elucidate the nature of excitations
inside the superfluid, and were essential to put in evidence the existence of vortex
lattices in rotating liquid “*He (for a review on early results, see [46]). The first
experiments on ions in an ultracold gas of " Rb atoms were reported by Ciampini
et al. [6], who produced ions by irradiating condensates and thermal ensembles
with laser pulses which ionize atoms through one- and two-photon absorption
processes. Upon ionization of about 10% of the cloud, large trap losses and
important density profile modifications were measured and characterized as a
function of the ionizing laser parameters.

Theoretically, the capture of atoms into weakly bound states of the atom-
ion potential has been considered in Ref. [8]. In this Chapter we consider the
structure of a positive alkali ion in a Bose-Einstein condensate when there is no
capture of atoms into bound states, and in particular we calculate the excess
number of atoms associated with an ion. We shall demonstrate that this number
is typically of order 10-100, either positive or negative.

The interaction between an atom and a positively charged alkali-metal ion
(charge e), which are separated by a distance r, is given at large distances by
the polarization potential caused by the electrostatic field s due to the ion,
Ees = e/4megr?. The change in the energy of the neutral atom amounts to

2
ges

V=-—
CY2,

(3.1)

« being the polarizability of the atom. Writing the polarizability as a = 4mwepa,

where & has the dimension of volume, the energy shift of an atom due to the
ion becomes )
e

V(r) = —-a=2, 3.2

() = 5% (32)

with ef = e%/4meo. At short distances (r < 10ag) the potential has a repulsive

core. An important characteristic length, which we denote by (4, may be iden-

tified by equating the kinetic energy h%/2mf3? to the potential energy V(534),
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and is given by

By= )~ (3.3)

ag Me

Here m denotes the mass of a neutral atom, m, is the electron mass and ag =
12 /meed ~ 0.53A is the Bohr radius. Using the measured values & = 320a3 for
87Rb and & = 163a3 for 2°Na, one finds BEP ~ 7150a0 and SY* ~ 2620a,. The
quantity (4 gives the distance from the ion beyond which the zero-energy atom-
ion wave function ceases to oscillate, and it sets the scale of atom-ion scattering
lengths, but their actual values depend on the details of the potential at short
distances.

We begin by deriving from thermodynamics a general expression for the
excess number of atoms around an ion and show that in dilute systems the excess
number depends only on the ratio of the atom-ion and atom-atom scattering
lengths. As we shall see, this approach suggests that the number of atoms
associated with an ion is typically of order 10-100, but that it may be either
positive or negative. In denser systems the excess number must be obtained
from microscopic considerations, and we shall determine the structure of an ion
immersed in a Bose-Einstein condensate at zero temperature, assuming that
atom-atom interactions may be described within the framework of the Gross-
Pitaevskii (GP) mean-field approach. We present solutions of the GP equation
for a number of potentials which include a hard core repulsion, an attractive
square well, and one which resembles the atom-ion interaction, a hard core with
a 1/r* attraction at larger distances.

For a given inner boundary condition, the Schrodinger equation has only one
solution for a given value of the energy. By contrast, the GP equation is not
linear and can have more than one solution for a given chemical potential. For
potentials like the atom-ion one that can support two-body bound states, we
shall find that at low densities there are 2vs + 1 solutions of the GP equation,
where vg is the number of bound states of the Schrodinger equation for the same
potential. With increasing density, pairs of solutions merge and disappear until
there is only a single solution with no nodes. We shall illustrate this behavior
for two potentials, an attractive square well and one with an attractive 1/r?
tail. An important question is which of these solutions is physically relevant.
At low condensate densities, one expects the wave function close to the ion to
resemble the zero-energy solution of the Schrodinger equation, and to have vg
nodes. This will be the case unless inelastic processes can populate lower-lying
states. We find that with increasing condensate density, this solution ceases
to exist. This indicates that the evolution of the state with density cannot be
continuous even in the absence of inelastic processes.

The plan of the Chapter is as follows. In Sec. 3.1 we derive the excess
number of atoms in the dilute limit by means of thermodynamic considerations,
and address the question of the validity of the Gross-Pitaevskii equation in the
present, context. Section 3.2 contains a description of the asymptotic behavior
of the condensate wave function far from the ion. In Sec. 3.3 we consider two
simple potentials to illustrate important general features of our results, and
in Sec. 3.4 we analyze the case of a potential that, like the actual atom-ion
potential, behaves as r~* at large distances. We calculate the excess number
of atoms from numerical solutions of the Gross-Pitaevskii equation for a given
background condensate density. The concluding section, Sec. 3.5, discusses our
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main results. The analytic solution of a related problem, an interacting gas in
a one-dimensional square well, is deferred to Appendix A.

3.1 Thermodynamic considerations

We wish to calculate the excess number of particles associated with an ion. To
define this quantity precisely, we imagine adding an ion to a condensate. This
will generally change the density of atoms far from the ion by an amount that
varies as 1/V, where V' is the volume of the system. A natural definition of the
excess number of atoms AN associated with the ion is the number of particles
that must be added to keep the atom chemical potential constant, since this
will ensure that the properties of the condensate far from the ion are unaltered
by the addition of the ion. In terms of the microscopic density of atoms n(r)
around the ion, the excess number is given by

AN =A4r /000 dr v [n(r) — nol, (3.4)

where ng is the density of atoms at large distances from the ion.

This is analogous to what has been done earlier to calculate the excess num-

ber of *He atoms associated with a *He impurity in liquid *He [47, 48]. We shall

denote the energy per unit volume as £(n,, n;), where n, and n; are the number

densities of atoms and ions, respectively. The chemical potential of the atoms
is given by

o€
Ha = anaa

and therefore the condition that this be unchanged by adding one ion and AN
atoms is

(3.5)

0% 0%
m + a—ngAN =0, (36)
or ) )
0%E 0%€E
AN =—— /| — . }
on,on; / on? (3.7)

One may also calculate AN from the change AF in the thermodynamic
potential F = E — N when a single ion is added to the system at constant .
Here E is the total energy and IV the total number of atoms. Since the number

of atoms is given by
oF

N=— .
T (38)
it follows immediately that
OAF
AN = — . 3.9
o (3.9)

Provided the volume considered is large compared with the scale of the atom
excess around the ion, AF' will be independent of the volume.

Let us begin by making estimates for a dilute gas. Provided the scattering
of atoms by atoms and of atoms by ions may be treated as independent binary
events, the energy density may be expressed in terms of the scattering lengths
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associated with the atom-atom and atom-ion interactions. If ion-ion interactions
are neglected, we may write

1
E(Na,mi) = anani + Uninani, (3.10)

and therefore from Eq. (3.7) we obtain

Uai
Uaa -

AN = — (3.11)
The mean-field interaction constant Uj; for species j and [, which may be either
atoms (a) or ions (i), is related to the scattering length a;; by
2mh2a;
Uy = "4 (3.12)
mji

where mj = m;m;/(m; + my) is the reduced mass of the two particles. Our
result can therefore be expressed as
Maa Gai

AN = — (3.13)

Mai Aaa .
If, as in Ref. [6], the ion is obtained by photoionization of the condensate itself,
the latter expression reduces to

AN = —a,i/aaa. (3.14)

To obtain an order of magnitude estimate of the excess number of atoms asso-
ciated with an ion, we note that the characteristic scale for the magnitudes of
atom-ion scattering lengths |a.;| is set by f4, given in Eq. (3.3), while the scale
for the magnitudes of atom—atom scattering lengths |a..| is set by

m 1/4
Be = 2m_06 ao- (3.15)

Here Cg is the coefficient of =6 in the van der Waals interaction, expressed in
atomic units. Thus we arrive at the estimate

~9 1/4
AN~ Bt (O‘— m) : (3.16)

Be 2a5C5 Me

which is of order 35 for Rb and 25 for Na.

The fact that the excess number of atoms is so large indicates that it may
well be a poor approximation to regard the ion as a free particle, with mass
equal to the bare ion mass. Rather, the recoil of the ion will be suppressed
by the other atoms surrounding the ion, and if AN > 1 it will be a better
approximation to regard the ion as being stationary. In that case the excess
number of atoms will be given by

agi(m)
205

AN = — , (3.17)

where the argument of a,; indicates that the scattering length is to be evaluated
for a reduced mass equal to the atom mass. Expression (3.17) gives a value for
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AN that is typically of the same order of magnitude as that given by Eq. (3.16).
However, we stress the fact that the estimate for AN depends sensitively on the
value of the effective mass of the ion, since the atom-ion potential has many
bound states, and therefore relatively small changes in the reduced mass can
result in large changes in the scattering length. Given that in the limit of low
atom density the magnitude of the excess number of atoms is expected to be
very much greater than unity, the result (3.14) will generally not give a realistic
estimate even in that case.

3.1.1 Validity of approximations

The perturbation induced by the ionic potential is very strong. Therefore the
question arises of whether the customary assumption of an essentially zero range
for the atom-atom interaction is valid. We address this point in Appendix A,
where we argue that the corrections to the GP result should not be large for
the properties of interest here. Here we examine the conditions under which it
is a good approximation to replace the effective atom-atom interaction by the
standard expression (3.12). Later we shall estimate the density below which the
dilute gas result (3.13) would be expected to hold. For nonzero wave numbers
k, the quantity that enters the expression for the energy shift is —d/k, where
J is the s-wave phase shift, rather than a [42]. Since a typical energy scale for
changes in §/k is set by h?/2m/33, while the potential depth is given by ae2/2r?,
we expect that the scattering length approximation will fail when

502 2
aeg 1)

5 > 2 or 1t < B2 (3.18)

The Gross-Pitaevskii approach should therefore be valid if the phase shift due
to the region where r < 7 = (840s)"/? is negligible. To estimate this phase
shift, we make a semiclassical approximation to the GP equation. This gives for
the total accumulated phase out to a distance r

D(r) ~ /OT dr’ QFL—T[M —V(r') = n(r"\Up]. (3.19)

Deep in the ionic potential, the wave function is given to a good approximation
by the semiclassical result, which has an amplitude

P o (rp(l:l/Q)_l, (3.20)

where pq(r) = [2mV (r)]'/? is the classical momentum of a particle of zero total
energy in the presence of the potential. For the r—* potential, the amplitude of
the wave function is therefore independent of r, and therefore we may replace
the mean-field energy to a first approximation by a constant nU,, where 7 is
independent of r. Expanding expression (3.19) in the deviation ng — 7 we find

O(r) = Do(r) + (nop — n) QH;QUO /OT dTIQJW' (3.21)

Due to the mean-field interaction, the accumulated phase out to a distance
r ~ 7 = (84/3)"/? is therefore changed by an amount

SR (F) = (no — it)aga(Ba3) ">, (3.22)
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If we take the interior density to be of the same order of magnitude as that far
from the ion, one finds

1/2 43/2
5P (7) ~ 45726 (3.23)
where the healing length for the bulk condensate ¢ is defined as
1
= —. 3.24
¢ V8Ta,ang ( )

Since under experimental conditions the healing length is typically comparable
to B4, while g is two orders of magnitude smaller, this shows that the region
close to the ion where the Gross-Pitaevskii equation fails is likely to be unim-
portant for the properties analyzed in this work.

On the basis of the above calculation, we may also estimate the density
below which the low-density result (3.13) is valid. Using the approximations
above, we find that the total accumulated phase out to a distance ~ (34, where
the semiclassical treatment fails, is of order
2

(5 ~ 5.
This indicates that changes to the accumulated phase can be significant under
typical experimental conditions (to give an order of magnitude, £ =~ 5000a, for
8TRb at a density of ng = 10'* atoms/cm?). As we will see in Sec. 3.4, when
the density is high enough that the interaction energy becomes comparable to
the energy associated with the polarization potential (i.e. when §®(84) ~ 1),
the mean field repulsion between the atoms alters substantially the spectrum of
the system, causing the merging and disappearance of pairs of states.

(3.25)

3.2 Microscopic theory

We now turn to microscopic considerations. Since, as we shall see, the distor-
tion of the condensate wave function in the vicinity of an ion extends to large
distances from the ion and involves many atoms, we expect that the effective
mass of an ion and its dressing cloud will be much larger than that of an atom,
and we may regard the ion as being static. To describe the structure of the
condensate in the vicinity of an ion we must therefore calculate the structure of
the condensate in a static external potential given by the atom-ion interaction.
Provided the length scale on which the condensate wave function 1 varies in
space is sufficiently large, we may do this by employing the Gross-Pitaevskii
equation with the interaction of atoms with the ion included as an external

potential,
h2
—o VAV )+ U [ul| ¥ = . (3.26)

Here and in what follows we shall denote the chemical potential of an atom by
u, and for simplicity we have written Uy = Uy, = 47h%a,./m, since ma, = m/2.
We wish to find solutions that tend to a constant at large distances from the ion,
and since the potential is spherically symmetric, these solutions depend only on
the radial coordinate r. Thus Eq. (3.26) becomes

R? 1 d?

2mrdr?

() + [Vr) + U [6] v = . (3.27)
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The behavior of the condensate wave function at large distances depends on
the nature of the potential V' (r). On linearizing the GP equation (3.26) and
making use of the fact that the chemical potential is related to the condensate
wave function v at large distances by the relation y = noUy where ng = |12,
one finds that the deviation

0P = — o (3.28)

of the condensate wave function from its asymptotic value satisfies the linearized
GP equation
h? 1 d?
—%;W(rw) + [V (r) + 2Ugng] 00 = =V (r)1o. (3.29)
For potentials with a finite range, one may neglect the potential at large
distances from the ion, and the solution that vanishes for » — oo is thus given
by

e—kg’!‘
0 oc ——, (3.30)

where k¢ = /2/¢ and the healing length ¢ is defined in Eq. (3.24).

For a potential, such as the atom-ion potential, that falls off at large distances
less rapidly than the solution (3.30), the behavior is different. The leading term
in the solution for large r is then the Thomas—Fermi result ¢ rr, given by

V(r) + Uolyrr|? = p, (3.31)

which, for the atom-ion potential with the asymptotic form given by Eq. (3.2),
amounts to

Vv 2
nrr(r) =ng — ULZ) =ng (1 + %) (3.32)
or, to first order in V,
v
rE & Yo — 2UE)7;D)0’ (3.33)

where we have taken 1)y to be real. The density perturbation at large distances
is seen to be always positive. Corrections to this result for smaller » may be
calculated from Eq. (3.29) by neglecting the potential on the left hand side of
the equation: ,

[—%%r + k:g} o = —%V(T)QZJO- (3-34)
By inspection of (3.34) it is evident that the leading term for large r of the partic-
ular solution to the inhomogeneous equation is given by §¢) = —(2m/h*kZ)V (r)io,
which yields the Thomas-Fermi expression (3.33). To obtain the first correction
to this result, we iterate Eq. (3.34) by moving the derivative term to the right
hand side and replacing §7 in it by the Thomas-Fermi solution. For the ionic
potential this results in

s 2m 12

The leading correction to the Thomas-Fermi result for 41 given in (3.33) is thus
seen to be proportional to 7~ ¢. Since we have already neglected the potential
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energy on the left hand side of (3.29), we cannot by this method obtain higher-
order corrections to the particular solution than the one exhibited in (3.35).

By including in the general solution the exponentially decaying term we thus
get the asymptotic result

51 V(r) 6¢2 eher
oo I (1+ )+ O (3.36)

where C' is an arbitrary constant.

For r — oo the asymptotic behavior of the solution is always given by the
TF result. However, whether or not this behavior is relevant for determining
the structure of most of the cloud of atoms surrounding the ion depends on
the relative size of the two characteristic lengths, 54 and £&. On the one hand,
for B4 > £ most of the cloud will be described by the TF approximation, and
only at distances less than ~ ¢ will the exponential term become important.
On the other hand, for £ > 3, (i.e. for low external density) the structure will
be dominated by the exponential term, and the TF tail will become important
quantitatively only at very large r. At shorter distances from the ion, the mean-
field energy becomes small compared with the atom-ion potential and the GP
equation reduces to a good approximation to the Schrédinger equation.

3.3 Simple model potentials

Before presenting results for the attractive 1/r* potential we begin by examining
two simpler model potentials, a repulsive hard-core and a spherical well.

3.3.1 Hard-core potential

Consider an interacting Bose-Einstein condensed gas in the presence of a repul-
sive hard-core potential of radius R. This model may be treated analytically in
both the small and large core radius limits. The solution to the GP equation at
large distances from the ion is given by Eq. (3.30),

¥~ Jmo (1 + cw) . (3.37)

If one assumes that this expression holds for all r greater than R, we can de-
termine the constant of proportionality C' by imposing the boundary condition
¥(R) = 0. This gives C = —Re"<®. For r close to R this has the form of
the scattering solution for the Schrédinger equation, ¢» = 1 — R/r. In fact,
for R/¢ < 1 this solution becomes essentially exact, since this function fails to
satisfy the GP equation only in the region where r ~ R, and in this region the
total change in the slope dy/dr of the radial wave function is small and may
be neglected. As an illustration of this fact, we calculate the excess number of
particles, which is given by Eq. (3.4), and find

R3 0 —ke(r—R) —2k¢(r—R)
4o [—— +/ drr? (—2Re + r2S . )] =
3 R T

T

R3 3R2¢

= —4 — + R& + .
mo[i% ¢ 2\/5}

AN

(3.38)
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For £ > R, this reduces to
R

AN = — .
20,4

(3.39)

Let us now compare this result with the one derived on the basis of thermody-
namic arguments. For a hard-core potential the scattering length coincides with
the core radius. Since we have assumed the ion to be stationary, its effective
mass is taken to be infinitely large, and therefore the reduced mass for the ion
and an atom is m, rather than the value m/2 one obtains for an ion and an atom
with equal masses. Thus, this result is in precise agreement with Eq. (3.13).

When the core radius is much larger than the healing length, the wave func-
tion reaches its asymptotic value on a length scale that is short compared to R.
Writing Eq. (3.27) as

—5 a3 H V) U5 | x = px (3.40)

with y = r¢, we can therefore replace the factor 1/r? appearing in the nonlinear
term by the constant 1/R? and we are left with an effectively one-dimensional
GP equation whose solution is

r—R
¥ = y/ngtanh ——, r > R, (3.41)
V26
and zero otherwise, as may be seen by inspection. The excess number of particles
is given by

: (3.42)
3 \/iaaag
where the leading term is due to exclusion of atoms from the core.
3.3.2 Attractive square well
We next consider a more physical potential, an attractive well:
h%k3
=— 4
Vr) o " <R, (3.43)

V(r) = 0 otherwise. Like the actual ion-atom potential, this can have bound
states for the two-body problem. With this potential we shall be able to examine
how solutions of the GP equation disappear as the condensate density increases.
The GP equation (3.40) reads

o E3O(R — 1) + 8Taaa M —ng||x=0 (3.44)
drz 0 r2 ’
where x = 7 and 6(x) is the step function. The scattering length for this

potential is
tan ko R
a:R(l— an %o ) (3.45)

koR

Since this equation is nonlinear, there can be multiple solutions for the same
boundary conditions (i.e. the same bulk density ng). As we will show in the
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following, for small ng it has 2vg + 1 solutions, where vg is the number of
nodes of the zero-energy solution of the Schrédinger equation s or, equiva-
lently, the number of bound states of the Schrodinger equation. In the low
background density limit, inside the well the solution with the maximum num-
ber of nodes approaches g, i.e. ¥(r) o sin(kor)/r, while outside it tends to-
wards the uniform density ng with the asymptotic behavior given in Eq. (3.30),
(1) o< exp(—ker)/r.

With increasing ng, the mean-field repulsion between the atoms makes the
effective potential shallower, which tends to push nodes of the wave function
outwards. At the same time, the increase in the chemical potential has the
opposite effect on the nodes. What we find is that if the zero-energy solution
of the Schrodinger equation has vg nodes, for low condensate densities the GP
equation has one solution with no nodes, and two solutions with any nonzero
number of nodes less than or equal to vg.

To demonstrate this, we analyze separately the behavior of the wave function
inside and outside the well, and match them at some intermediate point, which
for this particular potential we take to be the edge of the well. Specifically, we
integrate out from the origin, where x = 0, for different choices of the derivative
of x at r = 0 and calculate ¢ and v’ at the boundary » = R. These trace a
curve in 1) —1)’ space. Then we integrate inwards from large distances, where the
solution is defined by the proportionality constant C' of the Yukawa asymptotic
form, Eq. (3.30). As C is varied, another curve in ¢ — 1)’ space is traced out. If
the mean-field interaction could be neglected for r» < R, the ratio ¢'(R)/¢¥(R)
would not depend on the normalization of the wave function, and therefore the
curve corresponding to the inner boundary would be a straight line through the
origin. In the presence of atom-atom interactions, the ratio ¢’/¢ obtained by
integrating outwards traces out a spiral. For low ng this crosses the ¢’ axis a
number of times equal to the number of nodes the zero-energy solution of the
Schrédinger equation has inside the potential. This follows from the observation
that for low x’(0) the solution will have the same number of nodes inside the
potential as the zero-energy solution of the Schrédinger equation, while for very
large values of x/(0) the effects of the mean field will be so strong that the
solution has no nodes inside the potential.

The corresponding plot obtained by integrating inwards has two branches,
depending on whether ¢ (r — o) is positive or negative. Examples of the plots
are given in Fig. 3.1 for parameters such that vg = 3. For low ng, there are
2vg + 1 intersections of the two sets of curves, corresponding to solutions of the
GP equation. This is illustrated in Fig. 3.1a. As ng increases, pairs of solutions
with the same number of nodes merge and disappear, as shown in Fig. 3.1b.
Eventually, at sufficiently high values of ng only the node-less solution survives.

In Figs. 3.1 and 3.2 we show how, with increasing external density, the
solutions with the highest number of nodes actually merge. For densities higher
than this critical value, the only solutions are ones with a smaller number of
nodes.

Despite its short-range character, we will see in the next Section that the
model given above captures the main features of the solutions of the GP equa-
tion for the long-ranged atom-ion potential. As we show in Appendix A, a
one-dimensional model of an interacting gas in a square well potential, which is
appealing because it may be solved analytically, fails even qualitatively to de-
scribe the physics of the three-dimensional problem: in particular, states exist
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Figure 3.1: Behavior of ¢(R) and v¢’(R) for the solution inside the well (solid
line) and outside it (dashed and dot-dashed lines for ¢ (r — 00) = £, respec-
tively). In the plots we have set kgR = 9, which gives vg = 3 (i.e. three bound
states for the Schrodinger equation). We measure energies in units of A%k2/2m
and lengths in units of R. The calculations were performed for Uy = 0.45 in
these units, but results for other values of Uy may be obtained by scaling, since
for a given chemical potential, ¢ and ¢’ vary as U, 12 The symbols near in-
tersections indicate the number of nodes of the solution. The upper panel (a)
is for . = 0.45, and the lower one (b) for u = 2.9, just above the value u = 2.52
at which the two solutions with 3 nodes merge and disappear.
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Figure 3.2: Two solutions of the Gross-Pitaevskii equation for the attractive
square well potential. kgR and Uy are the same as in Fig. 3.1. For the upper
panel, the chemical potential is 0.45, as in Fig. 3.1a, while for the lower one it
is 2.5, just below the value at which the solutions merge. The solutions both
have three nodes, and are the first to merge as the chemical potential increases.
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in one dimension for arbitrarily high asymptotic densities.

3.4 The r—* potential

We now turn to a more realistic potential with the same r—* behavior as the
actual atom-ion interaction at large distances. For definiteness, we consider
parameters appropriate for a 8’Rb condensate, and we take aza = 100ag. At
large distances, we take the atom-ion potential to be given by Eq. (3.2) with
& = 320a3. The wave functions are sensitive to the short-range behavior of the
potential, but we may obtain illustrative results by cutting the 1/r* potential
off by a repulsive hard core of radius R. Since many atoms are bound to the
ion, we assume the ion to be static and set m,; = m. The atom-ion scattering
length of such potential may be calculated in the WKB approximation, and is

given by [49]
G = B4 cot {@} . (3.46)

R
The number of bound states allowed by the potential can be estimated by in-
creasing the potential strength from zero to its actual value. A bound state

appears each time the scattering length diverges, and therefore the number of

bound states is given by
vg = Int (%) , (3.47)

where Int(z) denotes the integer part of 2. To model actual atom-ion potentials,
a physically reasonable value of R would be ~ 10ag. However, the properties of
the wave function of most importance here are those at relatively large distances,
r 2> 103ag, so we take R = 300ay, since this should give us the correct physical
behavior for the distances of interest. We do not expect the qualitative behavior
of the wave function to depend on R, even though quantities like the scattering
length do, and we have verified this numerically.

We now describe numerical solutions of the GP equation that approach a
constant density ng far from the ion. Just as for the finite-range potential
considered in the previous Section, there is generally more than one solution for a
given value of the chemical potential, and for small external densities one expects
2vg 4 1 solutions. In Fig. 3.3 we show the wave functions corresponding to the
two states with the highest number of nodes, namely seven for the parameters
chosen, in agreement with the quasi-classical result (3.47). The free energy, for
a given condensate density ng, is highest for the states with the highest number
of nodes, and decreases as the number of nodes decreases.

In the absence of inelastic processes, we expect only the uppermost state
of the ionic potential to play an important role in the capture process, since it
is the only one with an appreciable overlap with the continuum wave function
representing the unbound atoms [8].

The excess number of atoms is given in terms of the atomic density dis-
tribution by Eq. (3.4) or, alternatively, from the free energy F' = E — uN by
Eq. (3.9). In Fig. 3.5 we show results obtained from our numerical simulations
by both methods. In the limit of very low condensate density we get values for
AN in accord with the thermodynamic arguments in Sec. 3.1. The consistency
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Figure 3.3: Condensate wave functions for the two uppermost states in the 1/r%
potential with the parameters given in the text for ng = 10'*cm™3. Both states
have seven nodes, but the resolution of the figure is inadequate to exhibit the
rapid oscillations for r close to R. The state that, in the dilute limit, becomes
the zero-energy solution of the Schrédinger equation is given by the solid line.
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Figure 3.4: Large-r behavior of the condensate wave function for the same
parameters as in Fig. 3.3: the dotted line is the TF approximation (3.33), which
approaches its asymptotic value as 1/r~%.
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Figure 3.5: Excess number of atoms around a single ion as a function of the
bulk density. The dashed line is the dilute limit appropriate for a fixed ion,
AN = —a,i/2aaa (R = 300ag gives an ~ —1980aq for an infinitely massive
ion). Results are shown for the four uppermost levels for this potential (i.e. the
two with 7 nodes and the two with 6 nodes, indicated respectively by the solid
and dot-dashed lines). The lines are obtained from Eq. (3.4), the circles from
Eq. (3.9). The inset exhibits the behavior at lower densities.
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Figure 3.6: Difference in free energy for the states given in the previous figure:
the solid lines are for the two states with 7 nodes and the dot-dashed line for one
of the states with 6 nodes. The free energy is measured in units of 10742 /mag.
The other state with 6 nodes lies much lower, at around AF ~ —3-107*A4% /ma3.
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of the two methods of calculation has been confirmed for core radii that give
scattering lengths in the range |a,i| < 5000a0.

The figure shows that the excess numbers of atoms for two states with the
same number of nodes become equal at the density above which the solutions
no longer exist. This is to be expected, since the solutions become identical
at this point. At the critical density we find ($7/£2 ~ 1, in accord with the
quasi-classical argument presented at the end of Sec. 3.1.

In the detailed calculations described so far we have focused attention on
states with close to the maximum number of nodes. In particular, in the low-
density limit and in the absence of inelastic processes that can cause the system
to relax, one would expect the state of the condensate to be the one that close to
the ion resembles the zero-energy solution of the Schrodinger equation. However,
three-body processes can relax the system, thereby populating states with lower
numbers of nodes. To calculate properties of such a system, one could start
with a many-particle wave function of the Hartree-Fock type in which more
than one single-particle state is occupied, and solve the Hartree-Fock equations.
This is, however, beyond the scope of the present study because the density
of atoms rises to values sufficiently high that the dilute gas approximation for
the interaction energy employed in the GP approach fails at relatively large
distances from the ion. To see this, we note that the states with small number
of nodes are characterized by high overall densities and are well described by
the Thomas-Fermi approximation, Eq. (3.32), down to very small distances from
the core. The dilute gas approximation is valid provided n|a,.|®> < 1, i.e. when

V(r) B1a?
3 3| _ Pi
n|aaa |’ ~ ‘ U ag,| = 16%?3 <1 (3.48)
or
> (Balaaal)?/3, (3.49)

which for rubidium (a,s = 100a¢) implies that the GP equation is valid only for
r > 300aq for such states.

3.4.1 Comparison with earlier work

In their paper, Coté et al. [8] looked at bound solutions to the GP equation, and
argued that the binding energy of the atoms trapped by the ion is proportional
to N~2/3, with N being the number of neutral atoms trapped by the ion. This
would imply the possibility to trap an infinite number of atoms in the absence
of other effects such as thermal fluctuations. In the following we sketch their
argument [50]. Let Ey = —h?/2ma2; be the energy of the last loosely bound
state of a single atom in the potential created by a single static ion. The
state has a characteristic spatial extension a,;. When N atoms with repulsive
interaction (aas > 0) populate the same one-particle state, they will sit in an
equilibrium configuration each at a distance ay > ay; from the ion. In a mean
field calculation, the energy might be written as

NU,
En = Eo+ 17—, (3.50)
§7TG/N
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where Uy, was defined in (3.12). If Ey < Ep, comparing the latter equation

with the rough estimate Ey = —h?/2ma% one obtains
Exn ([ aai ? B a \® (3.51)
Ey \an/  \6Naa, ' ’

Although we are solving a different problem and we are not in the position to
do a quantitative comparison with this result, our model predicts at low density
a divergence of the number of trapped atoms for every state that in the dilute
limit reduces to a bound state of the non-interacting problem (i.e. for every
state except the one that stems out of the zero-energy Schrédinger solution, see
Fig. 3.5). We observe in our simulations that, as the bulk density approaches
zero, AN diverges for these states since their spatial extension increases indefi-
nitely. This is in qualitative accord with the prediction of Coté et al., that has
been worked out to describe the uppermost bound state.

Nonetheless, at low condensate densities and in the absence of relaxation
processes, the system will occupy the state that more closely resembles the zero-
energy solution of the Schrédinger equation and not one of the bound states of
the ionic potential. Consequently, the number of trapped atoms will be finite
and given by the dilute limit result, Eq. (3.13).

3.5 Conclusions and discussion

In this Chapter we have calculated the excess number of condensate atoms
collected by the polarization potential of a single ion. We find that at low
bulk density it can be either positive or negative, depending on the sign of the
atom-ion phase shift, and a typical magnitude is of order 10 — 100 . A typical
spatial extension of this density disturbance is set by the length scale associated
with the ionic potential, G4 ~ 1 ym. Our estimates indicate that the Gross-
Pitaevskii equation gives a reliable description for the continuum wave function
that in the dilute limit approaches 1s, the zero-energy Schrédinger solution.
For states with fewer nodes, the GP equation may not be appropriate since the
density of atoms around the ion may grow substantially.

We have analyzed the Gross-Pitaevskii equation for a Bose-Einstein con-
densate in the presence of an ion as a function of the asymptotic density, and
characterized its asymptotic behavior. We find that for sufficiently low conden-
sate densities the non-linear problem admits 2vg + 1 different solutions, where
vs is the number of bound states of the linear (Schrodinger) equation. With
increasing condensate density, pairs of states become degenerate and disappear,
and the state of the system must change discontinuously. An interesting chal-
lenge is to find experimental evidence for such a behavior.

There are many open problems in this relatively unexplored field. In most of
the calculations we have assumed that the state of interest is the one with the
maximum possible number of nodes. More study is needed of inelastic processes
that will cause atoms to relax to lower states [8]. It would also be interesting
to obtain insight into the equilibrium properties of these ion-atoms compounds
when formed inside a trapped gas (i.e. whether these localize in the center of
the cloud or are pushed to the surface by buoyancy). The calculation of the
effective mass of the dressed ion would finally provide important information on
its dynamics.
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Figure 3.7: Excess number of atoms AN around a single impurity, calculated
from Eq. (3.52) using self-consistent mean-field solutions for a single impurity
and two different numbers of trapped atoms as a function of the atom-impurity
scattering length ag; (aaa = 0.005an0, M = m; and r. = ane). The dotted line
shows the analytical estimate for a homogeneous gas, Eq. (3.13). The cloud
is expected to collapse if ay; < —0.062an, for a cloud of 10* atoms, and if
agi < —0.075an, for 103. Image courtesy of D. Blume and R. Kalas.

It is interesting to note here that in a subsequent work Kalas and Blume
[51] have analyzed the possibility of localizing an impurity inside a trapped
cloud. By means of a mean-field model with contact atom-impurity potential,
they show that tuning the atom-impurity scattering length a,; from 0 to a large
negative value the impurity first gets localized inside the trapped condensate,
and finally can even cause the collapse of the condensate. From the density
profile of the atomic wave function they also calculate the excess number of
atoms around the impurity. Since they fix the number of atoms and not the
chemical potential, they define the excess number of atoms as

AN = 47 /0 " dr 2 [nr) — no(r) (3.52)

where n is the density of the trapped condensate in the presence of the impurity,
no the density in its absence and r. is an arbitrary cut-off radius (r. needs to
be finite since, with fixed N, AN = 0 if . — oo). Their findings are in good
agreement with our analytical result for a homogeneous gas (see Fig. 3.7), and
should converge to it with increasing number of condensed atoms.
Experimental studies will be valuable in providing guidance for future work,
and new investigations of condensate photoionization may soon start in the
cold atoms group in Pisa [7]. On the experimental side, particular care should
be taken in order to ensure sufficient observation times. In the experiment
performed by Ciampini et al. [6], the ions were produced with a pulsed pho-
toionization laser detuned above threshold by typically AE/h ~ 100GHz. Re-
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membering that the mass m. of the electron is much smaller than the mass of
the ion m;, the electron acquires a velocity of order

2AE

Me

~ 10'm/s. (3.53)

Ve =

Assuming that the ion is “dressed” by a cloud of ~ 50 atoms, it would recoil in
the opposite direction with

1 me _
v = %%ve ~ 2 x 10~3m/s. (3.54)

For a typical condensate size of 5um, this would result in a transit time of
about 0.5ns for the electron and 2.5ms for the ion. The pulsed laser might
be replaced by a continuous one, allowing for a much smaller detuning from
the atomic threshold, AE/h ~ 1MHz, and smaller dissociation kinetic energies.
Electric stray fields are nonetheless normally present inside the vacuum chamber,
and might drastically shorten the observation times independently of the initial
speed: a typical field of 1V /cm applied to an ion initially at rest would already
limit its transit time to 300ns. Careful control of electric stray fields down to the
present “state of the art” limit of about 1mV /cm could increase the interaction
time to about 10us, a time scale that is still relatively short compared to typical
observation times.

A very interesting proposition [52] is the possibility of replacing ions with
Rydberg atoms, i.e. atomic states characterized by large principal quantum
numbers n (40 < n < 80). An alkali atom in such a state is electrically neutral
and therefore it is not accelerated by the stray fields present in the cavity, but
characterized by a huge dipole moment, d ~ ea,n?, since its valence electron
sits on a quasi-classical, circular trajectory with very large radius. With careful
excitation of a condensate, a small number of atoms could be promoted to a
definite Rydberg state, and an external constant field could easily keep each
dipole aligned for times long enough to allow the formation and observation of
structures similar to the ones discussed in this Chapter.

We may try to estimate of the excess number of atoms around a Rydberg
atom along the same lines of reasoning that led to Eq. (3.16). A single Rydberg
atom creates in the far field r > d/e an electrostatic field s = d/4meor?® (we
neglect for simplicity the | = 2 angular dependence) and gives an energy shift
equal to
_e2aZnt
Vr)=-a 56
Equating potential and kinetic energies allows to find a characteristic length
BRydba

(3.55)

a m\"*
BRydb = agn (a—gﬁe) . (356)
By analogy with Eq. (3.16), we would estimate the excess number of atoms
trapped by the Rydberg atom to be roughly given by

IAN] ~ Pryab (@ 1/4 (3.57)
56 2(1ch ’ )
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that yields |[AN| ~ n/2 in the case of rubidium. Since principal quantum
numbers as high as n = 80 can be reasonably obtained, the present argument
would imply that these structures may have sizes similar to the ones generated
by static ions. Nonetheless, the characteristic length Bryqp is comparable to the
dipole moment d ~ ea,n? and therefore the result given by Eq. (3.57) does not
appear reliable, since it makes use of the potential (3.55) at distances outside
its range of validity. A more accurate estimate should take into account the fact
that at distances r < d/e the dipole potential flattens, i.e. V(1) ~ 1/(r + R)®
where R is a suitable cutoff of order the size of the dipole, d/e. The deeper
understanding of the problem would involve the solution of the GP equation in
the presence of a dipole potential, which is characterized by an [ = 2 angular
symmetry.

Experiments in this direction are planned in the close future by the Stuttgart
group [52] and will surely provide useful insights into this new and exciting field.



Chapter 4

Collective oscillations in
trapped interacting Fermi
gases

In a trapped two-component Fermi gas in its normal state, collisions are pre-
dicted to be rare at both low and high temperatures. When 7' <« Ty the
Fermi sphere is completely filled and collisions are suppressed due to the lack of
available final states (so-called Fermi blocking). In the high temperature limit
T > T, two-body encounters become exceedingly rare since the density of the
gas drops like 73/2. In both these conditions the gas is what is referred to as in
the collisionless regime. When weakly perturbed from its equilibrium position
the trapped cloud undergoes collective oscillations whose frequencies are sums
of integer multiples of the trap frequencies.

Very high gas densities, or strong interactions such as the ones induced
by Feshbach resonances, may change this picture and allow for (classic) hy-
drodynamic effects in the intermediate regime where T' =~ Tg. In addition,
two-component Fermi gases in the cross over regime are predicted to become
superfluid when 7' < 0.37%, and in this case the dynamics has to be described
by superfluid hydrodynamics. Gases under deep hydrodynamic conditions also
perform undamped oscillations, but at definite frequencies that are somewhat
smaller than the ones found in the collisionless regime. A careful and system-
atic study of the low-energy spectrum can give important informations on the
dynamics and typical collision times in the gas.

Our motivation for the work presented in this Chapter was triggered by the
publication of measurements characterizing the collective excitation modes of
strongly-interacting %Li atoms in a cigar-shaped trap as a function of interac-
tion strength and temperature [18, 19]. In the weak confinement direction, the
measured frequencies for the axial (quadrupole) mode are very close to the hy-
drodynamic value, in agreement with theoretical predictions. By contrast, the
results for the breathing mode in the tightly confined radial plane are somewhat
surprising: the measured frequencies agree with the expression for the hydro-
dynamic limit even though it is predicted that the typical collision times should
not allow the system to reach local thermodynamic equilibrium in the period of
a single oscillation (as we will see in the following, this is a necessary condition
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to observe hydrodynamic behavior).

In order to come closer to the solution of this puzzle, we investigate in the
following the problem of finding the frequency and attenuation of low-energy
collective modes in an interacting trapped two-component Fermi gas as a func-
tion of temperature and interaction strength. We show indeed that, under the
experimental conditions reported in [18, 19|, the gas performing radial shape
oscillations should never be able to enter the deep hydrodynamic regime, even
in the case of unitarity limited interaction (kr|a|)”" < 1, and should lie at most
in an intermediate region between the collisionless and hydrodynamic limits.

The detailed plan of the Chapter is as follows.

In the next Section we briefly recall the derivation of the collective-mode
spectrum for a non-interacting gas in both the collisionless and hydrodynamic
regimes. This has the sole purpose of introducing the reader to the topic: the
material contained therein is not original and can be found in standard textbooks
and reviews [53, 54, 4].

In Sec. 4.2 we first introduce the viscosity and viscous relaxation rate of a
gas through the linearization of the Boltzmann equation and show how their
asymptotic behavior at high and low temperatures is influenced by interactions
in both the uniform and trapped cases, respectively in Secs. 4.2.1 and 4.2.2.
Interactions effects are included in the collision integral via an energy-dependent
cross sections, and their importance is evidenced in Sec. 4.2.3, where we compare
the viscous relaxation rate predicted by our model with a calculation by Vichi
based on an energy-independent cross section [55].

We show in Sec. 4.3 how the linearized Boltzmann equation can be improved
to include an additional streaming term describing mean field interaction effects.

In Sec. 4.4 we solve the kinetic equation by a variational method, and extract
the frequency and damping of the low-energy spectrum as a function of temper-
ature and strength of the interactions in the case of an axially symmetric trap.
The derivation contains a number of technical steps, that are described in Ap-
pendix B. We compare our results in Sec. 4.4.1 with those of a model by Pedri
et al. [56], finding complete agreement in the range of validity of both theories
regarding the predicted shifts due to interaction effects. Our work extends the
latter by explicitly calculating the viscous relaxation rate and the importance
of mean field effects as a function of temperature, thereby allowing for a direct
comparison with current experiments.

The concluding Sec. 4.5 summarizes our main results and reviews the limit
of validity of our theory and its possible extensions.

4.1 Collisionless and hydrodynamic limits

The behavior of a trapped gas can be described exactly in the two extreme
limits of rare and frequent collisions. For definiteness, we will consider a gas of
particles with mass m in a (generally anisotropic) harmonic trap,

m
V(r) = 5(%25952 + win + wsz). (4.1)

In the absence of collisions, the atoms are free particles: their motion in the
three orthogonal directions is decoupled, and they perform undamped oscilla-
tions in the trap with frequencies that are sums of integer multiples of the trap
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frequencies w;,

w = Z Viw;. (4.2)

i=x,y,2

In the opposite limit of frequent collisions, each infinitesimal volume of the
cloud can be considered to be in local thermodynamic equilibrium and the
evolution is described by classical hydrodynamic theory. A typical collision rate
1/7 is given by

~

N
~| <

(4.3)

where v is the average particle velocity and | = 1/no is the mean free path
between collisions, n being the density and o the total scattering cross section.
Thermalization is ensured if each atom experiences many collisions during a
single oscillation, i.e. if the collision rate is larger than the trap frequency:

wr L 1. (4.4)

Another condition that needs to be satisfied is that the mean free path [ should
be small compared to the wavelength of the mode A. The wavelength of a collec-
tive mode is restricted to be smaller than the size of the trapped cloud R (while
perturbations with longer wavelengths are sound waves), and the second neces-
sary condition for the validity of the hydrodynamic picture can be formulated
as

<A< R (4.5)

In classical hydrodynamics the fluid is described as a continuous medium
whose motion is completely determined in terms of five variables, the three
components of the fluid velocity u and any two thermodynamic quantities, that
can be taken as the density n and the pressure p. The density and the velocity
are connected by the continuity equation

on

— + V.- (nu) =0. 4.6

Y () (46)
In an ideal fluid, no heat transfer occurs between different (moving) infinitesi-
mal volumes of the fluid and the entropy is conserved locally. The other four
equations necessary to close the description of the system can be taken as the
three components of the Euler equation

Ou Vp
. — =f 4.
8t+(u V)u+mn , (4.7)
which reflects momentum conservation, and the adiabatic equation describing

the conservation of entropy,

ds Os

4. =0. 4.

Eriaien +r-Vs=0 (4.8)
In the above formulae, s is the entropy per particle and f = —VV/m is the force

per unit mass’.

!Tn the case of non-ideal (viscous) fluids, the above equations are substituted respectively
by the three components of the Navier-Stokes equation and by an expression describing the
rate of conversion of mechanical energy into entropy.
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Linearization of Egs. (4.6) and (4.7) for an ideal gas obeying (under adiabatic
condition) a generic equation of state p o< n” leads to the following relation [4],

0%u _ Peq
ot? Teq

VIV-u)+V{f-u)+(y-1f(V-u), (4.9)

which describes the velocity field u of a gas subject to the force f. This equation
can be employed to extract the frequencies of low-energy hydrodynamic modes
for a harmonically trapped gas. To describe the simplest normal modes, we
introduce the Ansatz

u = (ax, by, cz)e !, (4.10)

which corresponds to an anisotropic homologous “breathing” of the cloud. Its
divergence is constant in coordinate space, and inserting our Ansatz into (4.9)
we obtain

—u=V({f-u)+-Df(V-u). (4.11)

Due to the linear character of both the force f = —(w2z,wyy,w?z) and the

velocity field u, only linear terms appear in Eq. (4.11), and the oscillation fre-
quencies are given by the roots of the determinant of the homogeneous linear
system for a, b and c.

For a monoatomic gas in the classical regime under adiabatic conditions
p < n®/3, and in a generic cylindrically symmetric trap with w, = w, = w, and
w, = Aw one finds the three roots

w? =20} (4.12)
W2
wi=4L (5 FANE /25 3202 + 16>\4) . (4.13)
The first root is associated with the m = 2 radial quadrupole mode a = —b,c =

0, and is independent of the trap anisotropy A since it involves no motion in the
z direction.

The other two frequencies are two m = 0 modes. In the spherically symmet-
ric case (A = 1) they are

wi =4w! and w? =2w7, (4.14)

representing the monopole (spherically symmetric, a = b = ¢) and quadrupole
modes (a = b= —c¢/2). In the highly elongated limit (A < 1) they become
10 , , 12,

wi=—w! and w?=-—"w? (4.15)

3 5
and are associated with the breathing mode (@ = b = 5¢/2) and the quadrupole
mode (a = b = —\%¢/2).

The procedure described above can also be employed to extract the eigen-
frequencies of a Bose-Einstein condensed cloud at T' = 0 when the number of
particles is sufficiently large that the quantum pressure term in the superfluid
hydrodynamic equation can be neglected, i.e. when the wavelength of the mode
is larger than the coherence length. Under this assumption the motion of a
condensate is described by an equation which is identical to its classical coun-
terpart (4.9) but requires the additional condition that the velocity field should
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be irrotational, V x u = 0. The Ansatz (4.10) satisfies this property, and the
derivation of the frequencies proceeds along the same lines, the only difference
being that in the case of a dilute BEC the equation of state is p oc n2.

Hydrodynamic theory in trapped gases must be applied with caution. As
already mentioned local thermodynamic equilibrium is ensured only by frequent
collisions, and this in turn requires a high density of particles. As a consequence
hydrodynamics never applies to the outer parts of trapped clouds, where the
density drops to zero and the mean free path becomes very large: quantities like
the averaged damping rate can be calculated from viscous hydrodynamics only
introducing a suitable length scale to cutoff the spatial average [57]. In addition,
for typical experimental parameters at temperatures at which the effects of quan-
tum degeneracy become appreciable, the conditions for hydrodynamic behavior
require that clouds should contain at least 10° — 108 particles. Consequently,
fully hydrodynamic conditions were not realized in early experiments on cold
bosons in the classical regime. These systems were in an intermediate regime,
characterized by wr =~ 1, and the frequency and damping of their collective
modes has been the subject of numerous investigations [57, 58, 59, 60, 61, 62].
The situation changed drastically with the new generation of experiments real-
ized with fermions: suddenly Feshbach resonances allowed the strongly interact-
ing regime kr|a| > 1 to be achieved, while Pauli principle limited three-body
losses and allowed for long-lived clouds. In the next Section we shall calculate
the characteristic relaxation rate for an interacting gas of fermions, analyzing
both the uniform and trapped cases. The average relaxation rate 1/7 will then
be used in Sec. 4.3 to obtain the frequency and damping of the oscillations from
a variational solution of the Boltzmann equation.

4.2 Viscous relaxation time

We shall consider a two-component Fermi gas of atoms with mass m (the same
for both components) in its normal phase with equal populations in the two
components. The gas may be uniform or trapped in a potential V(r). Since
we are dealing with dynamics for which the two components of the gas move in
phase, we only need to introduce one distribution function referring to a definite
set of internal quantum numbers, and f = f; = f| (for brevity we have denoted
the two sets by 7 and |). We assume that the dynamics is described by a semi-
classical distribution function f(r,p,t) which satisfies the Boltzmann equation
[63]

of . of . Of
L2 N 4.1
ot T ar TP g = UL (4.16)
where r and p evolve according to the Hamilton equations of motion,
. p . ov
—v = = 4.1
TEVEL P or’ (4.17)

and [ is the collision integral,

1= [ g2 [aalgv-wllFat - 0= - 0-)0- 175
(4.18)
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In the above expression, 2 is the solid angle for the direction of the relative
momentum p, = (p’ — p})/2 after the collision with respect to the relative mo-
mentum p, = (p — p1)/2 before the collision. The first factor inside the square
bracket describes the collision of two T and | fermions with initial momenta p
and p; scattering into states with momenta p’ and p}, while the second term
refers to the opposite process. Since we consider s-wave scattering, the inter-
actions only involve particles in different internal states and will be described
by the energy-dependent scattering cross section for distinguishable particles
derived in Eq. (2.33),

do a?

dQ 1+ (p./h)2a?’

In the present Section the streaming terms on the left hand side of (4.16) do
not contain any effects of the interaction, but in the following Sec. 4.3 we shall
add these as a mean field in the equations of motion (4.17).

The viscous relaxation time, which plays an important part in the following,
is defined in terms of the viscosity. Let us briefly recall how one determines the
viscosity by linearizing the kinetic equation. To describe small deviations from
equilibrium, we write

(4.19)

f(r,p,t) = f(r,p) +6f(r,p,t). (4.20)

In equilibrium the collision integral vanishes since fOf(1 — f¥)(1 — fY) =
(1= f9) (1= f9) £ fY" due to energy conservation. The linearization of Eq. (4.16)

yields
96f p Odf OV 95f
ot er or Oor 9Jp r®}, (4.21)

where the linearized collision integral reads

d do
19) = [ B [d0h v —will® + 81— & — @152 = 1)1 = 1),
(4.22)
and ® = 6f/[f°(1 — f°)]. Collisions conserve the number of particles, mo-

mentum and total energy: these constraints imply that the collision integral
vanishes when ® is a function of the form

©(r,p) = a(r) +b(r) - p +c(r)p?, (4.23)

since this ensures that ®+®; = &'+ ®/: any function of the form above is called
a collisional invariant. The distribution function describing a gas of fermions
in equilibrium in a frame moving with velocity u is given by

1
fu(rv p) = e(P?/2m+V—up—p)/kT + 1’

(4.24)

and the change in f for small velocities u and small changes of p and 7' is

-5 p? oT
0f =——= |u- ) — — — 4.2
f T wptopt o+ V—p) o, (4.25)
where f0 = fu—o. The corresponding ® is a collisional invariant, in accord
with the fact that f, is an equilibrium function, i.e. a stationary solution of the
Boltzmann equation.
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We calculate in the following the viscosity in a uniform system, and for
simplicity we take the direction of the flow velocity as our z-axis and assume
that it varies in the y-direction, u = (u,(y),0,0). The shear viscosity n relates
the momentum current density II,, given by

dp

to the gradient of the flow velocity according to II,, = —ndu,/dy. The factor
of two appearing on the right hand side of (4.26) arises from summing over the
contributions of the two components (T and |).

Under stationary conditions (4.21) becomes

p 90f py (Oug -1

R T il = —JI[§f]. 4.27
m e = m oy P % [0f] (4.27)
In order to establish the concept of a viscous relaxation time let us make a
relaxation time approximation to the collision integral with a relaxation time
Ty, which is so far an unknown quantity,

I[6f] ~ ‘i— (4.28)

The collision integral (4.28) together with (4.27) and (4.26) yields the viscosity

_ dp  pupy\? fO(1 - f°)
"= 2T / (27h)3 ( m ) KT (429)
Introducing the scalar product
dp
(A,B), = / WABfO(l - 19 (4.30)

and the notation X = p,p,/m, we may rewrite Eq. (4.29) in the compact form

(4.31)

that we will use as a definition for the relaxation time 7, in terms of the viscosity,
also when we will calculate it using the full collisional integral.

We want now to evaluate the ratio between the viscosity and the total par-
ticle density of the two components,

_ dp
Ntot = 2/Wf0 (432)

The angular integration in momentum space yields a factor of 1/15, and the
result can be written in the form

n 2 fooo e/2f0(1 — fO)de

= —TpSs5 .

Ntot 5 nfo 63/2f0(1 — fo)dE

(4.33)

Analytic expressions for the integrals occurring in (4.33) may be obtained when
KT is either small or large compared to the Fermi energy er = A%k /2m, where
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the magnitude of the Fermi wave vector kr is given by ki = 372nget. When
the temperature is much larger than the Fermi temperature Ty = ep/k, the
equilibrium distribution function is f° ~ exp[(u — €)/kT], with p being the
chemical potential, and (4.33) becomes

1 - TltotkT

T n

(4.34)

At low temperatures (T < Tr) we can approximate f°(1 — f°) ~ d(¢ — er) and
obtain from (4.33) that

L _ 2maer (4.35)
T 5 on )

4.2.1 Viscosity of a uniform gas

We shall now calculate the viscosity of a homogeneous gas using a variational
principle commonly employed in transport theory. Defining the operator

_ 19
o=y
the linearized Boltzmann equation (4.27) has the form of a linear, inhomoge-

neous integral equation, X = H [¥], where X = p,p,/m and H is a positive
semi-definite linear operator acting on the function

H [ (4.36)

T
i d

U = . 4.37
S (4.37)
Using this compact notation, the viscosity can be written in the form
= 2w, H[w]) (4.38)
"= p’ )

We note in passing that the same strategy outlined above can be applied to
obtain other transport coefficients in the form of scalar products of suitable
driving terms with the collision integral: the linearization of the Boltzmann
equation with respect to the electric field or the temperature gradient allows
one to extract respectively the electrical and thermal conductivities. A lower
bound on the viscosity can be found using the Schwarz inequality, that ensures

(6, H [@]), (U, H W), > (¢, H[¥]) (4.39)

for any trial function ¢. Choosing ¢ = X, the viscosity can be approximated
by the lower bound

2
2 (XX,

A (4.40)

nz

The explicit factor of two in the numerator of (4.40) arises from summing the
contributions of the two components. The corresponding viscous relaxation rate
is then

1 (X, HIX]),

S (4.41)
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which is seen to be independent of the normalization of X. The final expression
(4.40) is thus an approximate expression, obtained by a trial function propor-
tional to vyp,, but it is known [63] to differ at high and low temperatures by
only a few per cent from the viscosity obtained from the exact solution of the
Boltzmann equation.

The quantity (X, X), appearing in the denominator of (4.41) can be calcu-
lated analytically in terms of the Fermi integral

00 1 00 n—1
B IR 1 t
Jale) = ;( ST I'(n) /0 e (4.42)

where I'(n) indicates the Gamma function. Introducing the fugacity zp =
exp(u/kT) we find

KT < ap
P 3m ), (27wh)3

1= () T fyale). (449

X, X —
(X, X) 5T

The calculation of (X, H[X]) proceeds as in Ref. [61] where a similar quan-
tity was evaluated in the case of scattering between identical bosons above the
Bose-Einstein condensation temperature. To make a connection with the results
presented in that paper, we note that the collision integral is invariant under
rotations in momentum space, and the numerical value of (X, H[X])  will be
unchanged when evaluated with one of the following two trial functions,

3p2—p* or V12p.p,, (4.44)

the polynomials being respectively proportional to the spherical harmonic Y;75°
and to the normalized linear combination (Y52 — V"', ~?)/+/2. Substituting
Bose distributions with Fermi ones, and noting that the s-wave scattering cross
section for identical bosons is twice the one for distinguishable particles, we find

8
(X, H[X]), = W(ka)ll/QU(O) 1o (T),
where o(0) = 4ma? is the integrated cross-section at zero energy and I,(T) is a
the following 4-dimensional integral:

[e’e) [e%e) 1 1 7
I,(T) = / dzo/ dzr/ dy/ dy’ x%% (1+y*+y”* —3y*y?) F.
0 0 0 0 +zg

Here we have introduced the characteristic temperature

h?

kT, = —= 4.45
- (4.45)
and the dimensionless variables zg = |p+p1|/(4mkT)'/? and z,. = p,./(mkT)'/2.
Finally, we have defined y = cos6,., where 6, is the polar angle formed by the
vector p, with the z axis (similar relations hold for the primed variables), and

F(zo,2r,y,y') is equal to fOfP(1 — f*)(1 - f").
In the classical limit, T > TF, we may approximate F ~ fOf and the

4-dimensional integral fully decouples yielding

IclassT _ 2 o )
a ( ) \/EZO47T(Z2
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Here & is an effective cross section, which depends on the ratio 7'/T,:

2

41a? /°° ; e"
o= der' ———. 4.46
3 0 1+ 932% ( )

For T' < T, we obtain from (4.46) the classical result 6 = 47ra?, while in the
opposite limit, T > Ty, Eq. (4.46) yields

_ ,T. 2 27h?

g =4ma ST =3 mkT’ (4.47)
which is seen to be independent of the scattering length a and, apart from a
numerical constant, equal to the square of the thermal de Broglie wavelength: in
the unitarity limit, where |a| tends to infinity, the calculated viscous relaxation
rate approach a finite value that depends on temperature, since the cross section
in this case is determined by the typical value of the wave number p,./k for the
relative motion.

The viscosity as given in (4.40) is in the classical limit 7' > T¥ equal to

_ 5w vmkT
T8 &

Tlel (448)

and the viscous relaxation rate expressed in terms of the viscosity using (4.34)

is then 12

1 8 kT

= — — 7. 4.49

Ther 5ﬁnt0t ( m ) 7 ( )

At low temperatures, T' < Ty, one expects on general grounds that 1/7,

T? due to the restrictions on the available phase space caused by the occupied

states, the so-called Pauli blocking. The magnitude of 1/7, depends on the

dimensionless quantity v = (kpa)? = 27%/T,. The corresponding variational

solution to the Landau-Boltzmann equation of a Fermi liquid (see Ref. [63],
Sec. 6.2.1) yields

1 5 kET?
— —9or
Tn hT,

where the function F'() is given by the integral

F(v), (4.50)

1 0 1
dp—e
0 V1—221+~z?

the variable x being equal to the sine of half the angle between the two incoming
particle momenta in a collision. The function F'(7y) decreases monotonically from
the v = 0 value F'(0) = 16/15 to its asymptotic expression F'(vy) ~ 4/3v for
> 1.

In the unitarity limit (Ja| — oo) the viscous relaxation rate (4.50) becomes
independent of the magnitude of the scattering length, since F'(v) in this limit
is proportional to 1/a?. In general, when the scattering length diverges, the
calculated relaxation rate tends to a finite value which depends on temperature.
The value of 1/7, at unitarity vanishes as 72 at low temperatures and as 7~ '/2
at high temperatures.

In the intermediate temperature region the viscosity can be calculated nu-
merically, and in Fig. 4.1 we plot our results for the viscosity as a function of

F(y)=2 (4.51)
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3007
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Figure 4.1: The viscosity n for a uniform gas as a function of temperature for
kr|a| = 4.5, in units of 1 (TF), the classical value of the viscosity evaluated at
the Fermi temperature 7" = Ty for an energy-independent scattering cross sec-
tion. The inset illustrates the low-temperature T2 dependence of the viscosity.

temperature for the value kr|a| = 4.5. The inset shows the viscosity multi-
plied by T2 in order to illustrate its characteristic low-temperature behavior
given by (4.50). Since T, = 0.17y for this value of kr|a|, the viscosity at high
temperatures is proportional to 7/2. This may be seen by combining the high-
temperature relation for the viscosity (4.48) and the unitarity limited effective
cross-section (4.47). In the case of energy-independent scattering (T, > Tr)
the high-temperature viscosity is proportional to T'/2.

4.2.2 Viscous relaxation rate of a trapped gas

In order to apply these results to a trapped atomic cloud, we now include the
harmonic trap potential (4.1) in the equilibrium Fermi function. The average
viscous relaxation rate 1/7 is defined by

1 fdr(X,H[X]>p (X, H[X])
T fdr (X, X),  (X,X) '

(4.52)

where (...) denotes multiplication by f°(1 — f°) and integration over the whole
of phase space,

<...>:/(‘;‘;%’3f0(1_f0)... . (4.53)

Note that the spatial average of (4.41) is carried out for the denominator and
numerator separately. As demonstrated in Appendix B, this is the quantity
that enters as an effective relaxation rate when we take moments of the kinetic
equation in order to determine the frequency and attenuation of the collective
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Figure 4.2: The average viscous relaxation rate 1/7 divided by the transverse
trap frequency w, as a function of temperature, for kg|a|] = 0.01. The asymp-
totic temperature dependencies are indicated by the dashed lines. Note that
the system is highly collisionless, since the maximum value of 1/w 7 is about
0.00025.

modes. Our definition generalizes the one adopted in Ref. [60], and reduces to
it in the relaxation time approximation I[p?] ~ (p? — p?/3)/7(r):

1
1 ()

T ()
The calculation of 1/7, for a uniform gas involved integration over momentum
space only, and the presence of a trapping potential can be taken into account
through a spatial dependence of the fugacity,
29 — 2(r) = zge”VO/FT

where zy denotes now the fugacity in the center of the trap. The introduction of
the rescaled variables 7; = mw;r; allows us to transform the anisotropic trapping
potential into a spherical one, V (r) = #2/2m, and the viscous relaxation rate is
found in terms of 5-dimensional integrations, that we carried out numerically.

The results shown in Fig. 4.2 and all subsequent figures in this Chapter
were obtained for a total number N of particles given by N = 2.8 x 10°, which
represents a typical value for the experiments on °Li reported in [18, 19, 20].
We use the trap frequencies for the cigar-shaped cloud of [18], i.e. an axial
frequency w, = 27 x 70 Hz and a transverse frequency w, = 27 x 1550 Hz,
giving an anisotropy ratio equal to A = w,/w,; = 0.045.

The resulting average viscous relaxation rate is shown in Figs. 4.2 and 4.3
for two different values of the parameter kr|a|, one characterizing the regime
of weak coupling and the other the regime near the unitarity limit, where kr
is the magnitude of the Fermi wave vector in the center of the trap. At low
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Figure 4.3: The average viscous relaxation rate 1/7 divided by the transverse
trap frequency w, as a function of temperature, for kr|a| = 5.5 corresponding to
the experiment of [18] at a magnetic field of 870 G. The asymptotic temperature
dependencies are indicated by the dashed lines. The dotted line is the result
obtained in the unitarity limit |a| — oo.

temperatures the relaxation rates are proportional to T2, and they exhibit in
both cases a pronounced maximum at a temperature somewhat below Tr. The
asymptotic behavior at high temperatures differs in the two cases. When kp|a|
is much less than unity, the average viscous relaxation rate decreases as 1/T
at high temperatures. This may seem to be at odds with the fact that for a
uniform gas 1/7, according to (4.49) is proportional to 7'*/2 in this limit, since
& is independent of temperature. However, the average density in a trapped gas
is not a constant, but decreases at high temperatures as 7~3/2, which results
in an average relaxation rate proportional to 7-!. When kg|a| is much greater
than unity, the temperature-dependent cross section (4.47) causes the relaxation
rate to decrease even more strongly, as 72, In the unitarity limit, when |a]
approaches infinity, the average viscous relaxation rate approaches a limiting
value indicated by the dotted curve in Fig. 4.3. This is further illustrated in
Fig. 4.4 where we plot the average viscous relaxation rate as a function of 1/kg|a|
for various temperatures.

In Figs. 4.2, 4.3 and 4.4, we have normalized the viscous relaxation rate to
the transverse trap frequency w used in the experiments [18, 20]. The limiting
value of the average viscous relaxation rate for |a| — oo is seen never to be large
compared to w, , which demonstrates that hydrodynamics cannot be applied to
the transverse motion of the trapped atomic clouds in the normal phase. In
the next Section we determine the frequency and attenuation of the collective
modes and obtain results in support of this general conclusion.
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Figure 4.4: The average viscous relaxation rate 1/7 divided by the transverse
trap frequency w, as a function of 1/kr|a| for four different temperatures. The
parameters T/Tr = 0.03 and T/Tr = 0.1 correspond to the experimental con-
ditions of Refs. [19] and [20], respectively.

4.2.3 Comparison with energy-independent model

In a previous paper, Vichi [55] has calculated the relaxation rate for quadrupole
oscillations, averaging the collision integral over a different trial function, and
using the zero-energy cross section o = 4wa?. His result, Eq. (15) in [55], reads

2
¢ (Nl/gi) Fo (Z)
WhoTQ 53 (ho Tr

where wp, is the geometric mean of the trap frequencies, ano = \/ii/mwp, the
harmonic oscillator length and F a universal function of the reduced tempera-
ture T'/Tr. In the limit kra ~ 0 our relaxation rate (see Fig. 4.2) exactly coin-
cides with the one derived by Vichi. The situation is different for the strongly
interacting case. The result found by Vichi is manifestly proportional to a? and
diverges in the unitarity limit kp|a| — co. In contrast, due to the saturation of
our cross section for large relative momentum k,., we find a strong reduction of
the relaxation rate (and a finite value in the unitarity limit), implying much less
hydrodynamic behavior than what an energy-independent theory would predict
(the reduction is of a factor 1/20 for the continuous line in Fig. 4.3, correspond-
ing to kra = 5.5).

4.3 Frequency and attenuation of collective modes

We now extract the dispersion relation of the low-lying collective modes by solv-
ing the linearized Boltzmann equation (4.16) with an appropriate trial function
®. The equations of motion (4.17) are modified to take into account the mean-
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field potential U given by
U(r) = gn(r) = g[n°(r) 4 on(r)], (4.54)

where g = 47h?a/m is the interaction constant. A description of the interactions
in term of a mean-field term will hold as long as the gas is sufficiently dilute (for
a typical peak density of about 10'3atoms/cm?, this yields a < 5000a0). The
density n” denotes the equilibrium density for a single spin, that is n® = ny =
n{ = ngey /2, and dn(r) similarly denotes the non-equilibrium change in density
for a single spin. The effective potential is thus the sum of U and the harmonic
oscillator potential V(r) given by (4.1), yielding the equations of motion

) p . OV+U)

f=v=-_—; p= Era (4.55)

Let us first establish some useful relations between equilibrium quantities.

We consider the kinetic equation in equilibrium, where the right hand side of
(4.16) vanishes, and insert the equations of motion (4.55), obtaining

) 0 ) 0 0
Z wi PiLN — {7 +mg - o | _ 0, (4.56)
=,z (97’1' 87’1' 8pi

or equivalently

> wi {m%&m - (7’ +mgg¢j> %pz]po)q —0. (457

1=,Y,%

We have here introduced the rescaled variables 7; = mw;r;, in terms of which
the potential becomes spherically symmetric, V (r) = #2/2m. If we now multiply
(4.57) by fpzpz and integrate over both position and momentum variables, we
obtain

~ m2
(i) — (#°p)) + 5 kTg / d*r (n°)2 = 0. (4.58)

Using fO(1—f°) = —(mkT/p)df°/dp, we can calculate analytically the integrals
appearing in (4.58) and obtain the virial theorem,

3
Eidn — Epot + 5 Eine = 0. (4.59)

The kinetic, potential and interaction energies are respectively

drdp ,, p?
Eyin =2 — 4.
, / (27rh)3f 2m (4.60)
drdp
ot = 2 / eV ). (4.61)
and
Eint = g/dr (n%)2. (4.62)
In general, in d > 2 dimensions the virial theorem holds in the form
d
Ekin - Epot + _Eint =0. (463)

2
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To lowest order in the coupling constant g, the linearized version of Eq. (4.16)

reads
o0 + |9 (o " on®\ 0
ot = ZWZ Di a7, 7y +mg 5 ) om;
LTI U
fo(1— f9) or; ap; | fO(1— f9)’ (4.64)

where n" as before denotes the equilibrium density for a single spin while the
corresponding non-equilibrium change in the density is

3
n = /(2‘;—%31‘0(1 — 0. (4.65)

We shall in the following consider modes for which the drift velocity u has a
spatial dependence given by u; o« 7;. The deviation function ® of a fluid moving
with velocity u is proportional to u - p. Since acting on u - p with the left side
of (4.16) generates terms like 22, p2, etc., we follow [60] in choosing the trial
function as

O =e" D" (a7 + bifipi + cip}). (4.66)

I=T,Y,Z

We insert this Ansatz into the kinetic equation (4.64) and calculate moments
multiplying by the product of f°(1 — f°) and any of the terms 72, 72,...,p?
appearing in ®, and subsequently integrating over both r and p. The result is a
set of nine coupled homogeneous equations for the nine coefficients a,, ay, ..., c.
and the frequencies of the collective modes emerge as the roots of the determi-
nant. The details of the calculation are given in the Appendix for the general
case when all three trap frequencies are different.

4.4 Results and comparison with experiment

In order to make contact with recent experiments [18, 19, 20| we consider an
axially symmetric trap with w, = w, = w; and w, = A, . We introduce the
parameter
SE.
5 ¥int
=27 4.67
g=2, (467)

pot

which, as we shall see, determines the sign and relative magnitude of the fre-
quency shifts. We shall expand our results to first order in ¢, since our mean-field
treatment of the interaction in the streaming terms of the kinetic equation is
only valid when |¢] is small compared to unity. The temperature dependence of
¢ is shown in Fig. 4.5. In accord with our first order treatment of the mean field
we calculate £ by approximating the equilibrium Fermi function, which enters
Eint as well as Epot, by its value in the absence of interaction. At high tem-
peratures one finds from (4.67) that |¢| oc T—5/2, since the interaction energy
Eing in the classical regime is inversely proportional to the volume of the cloud
(Fint o< T3/2), while the potential energy is proportional to the temperature.

The determinant of the matrix, which is derived in Appendix B, has the
form of a polynomial in the frequency w. The vanishing of the determinant
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Figure 4.5: The temperature dependence of the parameter £ given by (4.67) for
different values of kra. At high temperatures |¢| decreases as 7%/

yields the following equation

2

w [(w —wiy) — iwr(w? - wfl)]

(W% = wiig) (@? —wiiq) — dwr(w? — i) (W? —wg)] =0,  (4.68)

where 7 is defined by (4.52). Note that the average viscous relaxation rate 1/7
depends on temperature as illustrated in Figs. 4.2, 4.3 and 4.4.

In general, the solutions to (4.68) have real and imaginary parts, w = Re(w)+
tIm(w), which determine the frequency and the damping of the collective modes,
respectively. The (purely real) frequencies appropriate to the hydrodynamic
limit, wr — 0, are denoted by subscript (hd), while those for the collisionless
limit, wr — oo, carry the subscript (cl). We will quote our results only up
to first order in ¢ since our calculation of the frequency shifts caused by the
interaction cannot be trusted beyond that. The first term in square brackets in
(4.68) corresponds to the m = 2, A-independent mode, see Eq. (4.12), and we
find

Wiy = 2wi (4.69)
§

wi = 4w? (1 - 3)- (4.70)

The second term in square brackets represents the two m = 0 modes, see
Eq. (4.13), and in the hydrodynamic limit we find

Wige B 544X\ £~ i§4/\47)\2(52|:’y)+2(5:|:7)
w? 3 6y

with v = (25 — 32A% + 16A*)/2. For A < 1 the latter are given by

10 12
What = 3 Wi+ %) and  wiq = —wi(l+ 2%). (4.71)
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Figure 4.6: The calculated frequency of the breathing (+) mode as a function
of temperature, with and without the mean-field correction for values of |¢| less
than or equal to 0.5. The experimental values from [18] are indicated with the
estimated error bars included.

The modes labeled + and — are the breathing and quadrupole modes, respec-
tively, which are studied in the experiments [18, 19, 20].

In the collisionless limit, a Taylor expansion of the roots of the determinant
for small ¢ and for a generic trap anisotropy A is not analytic in A = 1 (since
two normal modes are degenerate in the spherical case). The expansion can
nonetheless be performed separately for the two cases of elongated traps (A < 1)

wiy =4w? and Wl :4&;3(1*%) (4.72)

and spherical traps (A = 1)
2 (14 d o =ai-t 4.73
way = 4w ( +4) and  wg. = 4w ( 2)- (4.73)

In addition, we find from (4.68) three purely damped modes, Re(w) = 0,
corresponding to relaxation of temperature anisotropies. The first one is asso-
ciated with the overall factor w in front of the square brackets, corresponds to
a homogeneous temperature change in all directions and causes no relaxation
at all, w = 0. The second comes from the first square bracket, has m = 2 and
frequency w = —i/7 in the hydrodynamic limit w7 < 1 and w = —iw?, /w7
in the collisionless limit, again A-independent since it involves only relaxation in
the x —y plane. The third arises from the second square bracket, has m = 0 and
frequency w = —i/7 in the hydrodynamic limit and w = —iwjy Wiy /Wi W3 T
in the collisionless limit.

In Fig. 4.6 we plot the calculated frequency as a function of temperature
for kpla| = 5.5, which corresponds to the parameters quoted in [18], along
with their experimental values. Since we assume |{| to be small compared to
unity, we show the mean-field curve only in the temperature region where [¢|
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Figure 4.7: The damping time of the breathing (4) mode as a function of tem-
perature, with and without the mean-field correction. The mean-field corrected
curve is plotted for values of |£| less than or equal to 0.5. The experimental
values from [18] are indicated.

is less than 0.5. There is a clear discrepancy between our calculated frequency
and the experimental result at 7" = 1.157F and its possible origin is discussed
in the next Sec. 4.5. The corresponding results for the damping, given by the
imaginary part of the frequency, are shown in Fig. 4.7. In order to compare with
the experimental data below 0.57F in Figs. 4.6-4.7, it is necessary to improve
our treatment of the interaction effects in the streaming terms of the kinetic
equation.

In Figs. 4.8 and 4.9 we show results for the real and imaginary part of the
frequency of the quadrupole (-) mode. In elongated traps the mode implies mo-
tion mainly in the axial direction and, since w, < w , there is a broad temper-
ature region where the system behaves hydrodynamically. The damping shows
a double-peak structure that reflects, as temperature is lowered, the transition
between the different regimes, from collisionless to hydrodynamic and back to
collisionless behavior [55]. The mean-field corrections in Fig. 4.8 are seen to be
much smaller than those in Fig. 4.6, in agreement with the different prefactors
of £ in Eq. (4.71).

4.4.1 Comparison with earlier results

In a recent work, Pedri et al. [56] calculated the frequency shifts induced by
interaction describing the non-equilibrium distribution function by a scaling
1

Ansatz,
T 1 bi
ot e )| e
J K2

f° being the equilibrium distribution function, b;(¢) and 6;(t) 6 scaling param-
eters that describe linear dilatation and effective temperature in each direction.

f(t’riavi): fO
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Figure 4.8: The frequency of the quadrupole (—) mode as a function of temper-
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Figure 4.9: The damping time of the quadrupole (—) mode as a function of
temperature.
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For small perturbations, one can write b; = 1+ 6b; and 6; = 1+ 06; and expand
Eq. (4.74) to recast it in a more familiar form as f = f%(1 — f°)® where

~ LW
P =aq; (7’1'2 - Z—T’z‘pi> + cip;
Wi
with a; = —20b; and ¢; = —d6;. In the spherical case and in the absence of
mean field, inserting this Ansatz into the linearized Boltzmann equation and
taking the moment with 72 one easily obtains the relation a = —c, that allows

to find drd
/dr on = / (2%711))3 91— 9% =o0.

In the non-interacting limit, the Ansatz of Pedri et al. explicitly enforces particle
conservation at the expense of reducing the number of variational parameters.
Our results for the frequency shifts, valid to first order in &, are in agreement
with those of Pedri et al. when expanded to first order in £. Our results differ
to second and higher order. This is understandable since the form of Eq. (4.66)
is more general than the scaling Ansatz (4.74), which involves six rather than
nine parameters. However, since our calculation of the frequency shifts caused
by the interaction cannot be trusted beyond first order in &, our results are in
essential agreement with those of [56]. Our work thus extends that of [56] in the
sense that we determine £ and 7 as functions of temperature, thereby allowing
for a direct comparison with experiment.

4.5 Discussion and conclusions

In this Chapter, we have calculated the viscous relaxation rate for an interacting
Fermi gas in its normal phase by means of an approximate solution of the
Boltzmann equation in both the uniform and trapped cases. We have found the
asymptotic behavior at low /high temperatures and for weak/strong interactions,
and performed a numerical integration of the collision integral mapping the
intermediate temperatures currently investigated in the experiments [18, 19, 20].
In particular we have pointed out that, for typical experimental parameters,
hydrodynamic conditions for motion in the transverse direction are not attained
even in the unitarity regime kyla| > 1.

Subsequently we have solved the kinetic equation for the semi-classical dis-
tribution function including the mean field as an additional streaming term and
determined the frequency and attenuation of collective modes as a function of
temperature in presence of strong inter-particle interactions. Our treatment
applies to both the collisionless and the hydrodynamic limits, as well as to the
intermediate regime.

We have quantitatively compared our theory with a recent experiment per-
formed in the Duke University group [18] and found definite discrepancies in the
high temperature region: observed frequencies agree with the hydrodynamic re-
sult even for T > T, a regime where the gas is definitely in its normal phase and
our theory predicts a behavior closer to the collisionless one. In the following
we analyze possible origins of this disagreement.

To begin with, we note that the cross section (4.19) used in our treatment
of the collision integral neglects medium effects, i.e. the possibility that in-
termediate scattering states may not be available due to Fermi blocking. As
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shown in [64], these effects can be significant at very low temperatures. In a
subsequent work Bruun and Smith [65] have improved the calculation of the vis-
cous relaxation rate presented in Sec. 4.2 using a many-body scattering matrix
which explicitly includes Fermi blocking of intermediate states. At unitarity
and for temperatures close to T¢ (the temperature for the transition to the su-
perfluid state, predicted to be at about 0.37F), the improved cross section gives
an important increase of the relaxation rate, almost an order of magnitude in
the uniform case. When averaging over the spatial profile of a trapped cloud,
medium effects are reduced in the low-density region at the boundaries and the
increase is only a factor of 3. The improved collision rate nonetheless reduce
to ours in both the weakly-interacting (kr|a| < 1) and/or high temperature
(T Z 0.57F) regimes, and the discrepancy at temperatures of order Ty between
our theory and the experimental results of [18] is not solved by the inclusion of
the improved scattering matrix.

The Boltzmann equation was originally developed to describe classical and
dilute gases, which obey Boltzmann statistics and are satisfactorily described
by a picture of freely propagating particles rarely undergoing only two-body
collisions. Despite its “classical” origins, the Boltzmann equation can be applied
to arbitrarily low temperatures provided the appropriate quantum distribution
(fermionic or bosonic) is used whenever the thermal de Broglie wavelength be-
comes larger than the interparticle distance. Kinetic theory has also been suc-
cessfully employed in describing the collective properties of the so-called Fermi
liquids, such as electrons in metals and liquid ®He: in these systems interac-
tions are indeed very strong but Fermi statistics ensures that at temperatures
T < Tg collective excitations are well defined quasiparticles with very long
lifetimes, proportional to (Tx/T)?, that can be satisfactorily described by the
Boltzmann equation.

When dealing with strongly interacting gases, an important role might be
played by a number of processes beyond two-body scattering, such as many-
body encounters, pairing or formation of short-lived molecules. As one goes
from the weak- to the strong-coupling regime the length scale associated with
the interactions becomes formally infinite, and simple dimensional considera-
tions show that thermodynamic quantities follow a universal behavior, each
becoming simply proportional to its respective non-interacting value. The ad-
jective “unitarity” often used to designate this regime is indeed motivated by
this universality. The proportionality constant is independent of the particular
system and is usually a number of order one: none of the thermodynamic vari-
ables shows particularly marked signatures of the transition. Transport prop-
erties should instead be more deeply affected when the interaction parameter
becomes infinite.

Gelman et al. [66] advance the hypothesis that ultracold gases near Fesh-
bach resonances might be near-ideal liquids, with mean free paths comparable
to or even smaller than the interparticle distance: they suggest describing low-
frequency dynamics of such strongly-interacting matter within the framework
of viscous hydrodynamics, which is based on an expansion in inverse power of
the cross-section and yields damping rates that are proportional to the inte-
grated viscosity [57]. This approach seems interesting and worthy of further
investigation.

Finally, in the pioneering experiments described earlier in this Chapter tem-
perature calibrations were extremely hard to perform and small trap anhar-
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monicities in the radial directions (w, # wy) could affect substantially results
that need to be precise at the percent level to distinguish between the different
regimes?.

It would be interesting to study further the behavior of the gas all the way
through the transition between the weakly- and strongly-interacting regimes:
by measuring the oscillation frequencies at various magnetic fields as a func-
tion of temperature, one could test the predictions for shifts in frequency and
attenuation due to the interaction. Quoting from a recent paper [67], “the ob-
served hydrodynamic behavior at high temperatures is not explained by existing
theories”.

2The Duke group recently measured the anisotropy of their trap to be wz/wy ~ 1.1 [21].






Chapter 5

3D Anderson localization of
matter waves

In a paper that dates back to the early years of quantum mechanics, von Neu-
mann and Wigner [68] showed that the Schrodinger equation can admit isolated
eigenstates embedded in the continuum of states with energy higher than the
maximum of the potential. By an elegant argument, they constructed a class of
bizarre potentials with rapid oscillations, but bounded and vanishing at infin-
ity, and showed that these potentials support eigenfunctions that are localized,
i.e. square-integrable. An example of a potential and a wave function of a lo-
calized state constructed by this model is shown in Fig. 5.1. Von Neumann and
Wigner attributed the existence of these puzzling localized eigenstates, that are
stationary even though the motion would be unbounded classically, to diffractive
interference.

Many years later Anderson, in his celebrated work “Absence of Diffusion in
Certain Random Lattices” published in 1958 [27], proposed that the number of
these isolated states could grow considerably in the presence of disorder. He
dealt with a simple model Hamiltonian,

H=Yeuln) (0] + 3 Vi Im) (n] (5.1)

that describes non-interacting particles hopping on a 3D lattice with random
on-site energies ¢,,, and demonstrated that for a sufficiently strong disorder there
is, after an infinite time, a non-zero probability of finding at a certain site ng
a particle that had been placed on the same site at ¢ = 0. He showed also
that the populations of the neighboring sites decrease exponentially fast when
moving away from ng. There exists therefore in his model a definite threshold
for the strength of the disorder beyond which diffusion comes to a halt: this
peculiar quantum phenomenon, which more generally leads to the formation of
a macroscopic number of localized eigenstates as a non-interacting ensemble is
exposed to a static disordered potential, is usually referred to as Anderson local-
ization. A localized state does not extend over the whole system and does not
contribute to transport: when a sufficient number of those is formed, diffusion
is inhibited and transport theory becomes inadequate to describe the state of
the system. The topic has been subject of intense investigations in the last 40
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Figure 5.1: Localized state (continuous red line), confined by a bounded, non-
random potential vanishing at infinity (dashed green line), obtained by the von
Neumann-Wigner method [68, 69]. The state has an energy equal to twice the
maximum of the potential.

years (for a review on the work done, see e.g. [25, 26]), but the overall picture is
still far from being clear and the only experimental signature of the transition
in three-dimensional case [28] has been object of a long debate.

As correctly argued by von Neumann and Wigner, the localization of the
wave functions is due to destructive quantum interference of multiply scattered
waves, and its onset can be qualitatively predicted by the Ioffe-Regel criterion,
which states that the wavelength of the matter wave A should be larger than
the mean free path [,

A2l (5.2)

The mean free path is related to the density of scatterers n and the scatter-
ing cross section o by ! = 1/no, and ultracold atoms seem to be a perfect
playground for putting in evidence Anderson localization since very large A can
be obtained and atom-atom interactions can be easily tuned by means of Fes-
hbach resonances. Moreover, ultracold gases have very weak coupling to the
environment, and undesired effects of decoherence can be made negligible.

In recent months, a rapid succession of experiments on Bose-Einstein con-
densates (BECs) in random potentials has been reported [30, 31, 32, 33]. In
these experiments, a spatially random one-dimensional potential is induced on
cigar-shaped BECs by means of a speckle field [29]. The analysis of density pro-
files after expansion provided evidence for many disorder-related effects, such
as fragmentation of the condensate, suppression of diffusion, frequency shifts
and damping of collective oscillations. Nonetheless, if one is interested in pro-
viding evidence for Anderson localization, care needs to be taken in order to
guarantee that the matter wave is not classically trapped, i.e. in the case of
speckle potentials one must require that the chemical potential is much bigger
than the typical amplitude of the random potential. In particular, this will
never be satisfied in the late stage of the expansion, and small fractions of the
cloud remain trapped in deep valleys of the random potential. Moreover, re-
pulsive interactions smooth the modulations of the wave function induced by
the random potential, and localization is expected to be inhibited unless the
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healing length of the condensate £ = 1/v/8mna is much larger than the typical
correlation length of the pattern Ar [33, 70]. In the experiments with speckles
[30, 31, 32, 33] this condition is generally not satisfied, since the minimum length
scale for the disordered potential is limited by diffraction to Ar ~ 5 — 20um,
while typically & ~ 1um.

In this Chapter, we analyze a way of realizing a disordered potential that
allows one to obtain much smaller correlation lengths and where classical lo-
calization effects are completely ruled out. Following the work of Gavish and
Castin [34] and extending their analysis to three-dimensions, we study the be-
havior of a non-interacting matter wave in the presence of a random gas of
scatterers, constituted by particles of another species populating randomly cho-
sen sites of a deep optical lattice. In Sec. 5.1 we describe in detail our proposal,
both its practical implementation and its modeling. In Sec. 5.2, we show nu-
merically that the considered scheme leads to the appearance of a large number
of localized states in a range of parameters accessible by present experiments,
provided that the effective coupling constant of the matter wave to a single
scatterer is large enough. Section 5.3 is devoted to the study of the scattering
between two particles, one of which is free and the other trapped in a lattice
site, and to the discussion of the confinement-induced resonances arising in this
problem: our analysis shows that the large effective coupling constants required
in Sec. 5.2 can indeed be obtained. Possible strategies for observation of these
localized states and our conclusions are reported in Sec. 5.4. Appendices C and
D contain the calculation of the Green’s function for a particle in a box and the
detailed derivation of an integral equation appearing in the two-body scattering
problem.

5.1 The model

We propose to study quantum localization effects induced by a static random
potential on a non-interacting matter wave. A schematic view of the proposed
setup is reported in Fig. 5.2. A one-dimensional analysis of this model has
been presented in [34], and in this Chapter we study the three-dimensional
case. We address here the question of how to realize experimentally both the
disordered potential and the non-interacting matter wave, and introduce our
model Hamiltonian, carefully justifying all the approximations involved. The
numerical solution of the model is presented in Sec. 5.2.

5.1.1 The disordered potential

The scatterers are a set of identical particles, whose chemical species and quan-
tum numbers will be indexed by the letter B, randomly occupying (with filling
factor p < 1) the sites of a 3D cubic optical lattice. The potential seen by the
B atoms is produced by a superposition of three identical laser standing waves
along the z, y and z axes,

VB (r) = VP [sin®(kpx) + sin®(kry) + sin?(kr2))], (5.3)

where Vi > 0 is the modulation depth of the lattice and k, = 27/Ap, is the
laser wavenumber. We shall denote the lattice spatial period along each axis by
d = A1, /2 = w/kr. Multiple occupation of a lattice well is assumed to be absent,
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Figure 5.2: Sketch of our proposal: a matter wave (A, blue) scatters on randomly
distributed particles (B, red), each occupying the vibrational ground state of a
node in a 3D optical lattice (here the average occupancy p is 10%). The lattice
does not act on the matter wave A.

by use of polarized fermions, or by creation of vacancies in a unit occupancy
Mott phase state [23], or simply by choosing p sufficiently small to make it
statistically irrelevant.

We choose the lattice depth V¥ to be much larger than the recoil energy
EP = h%k2 /2mp of the B atoms so that the tunneling time of B atoms from
one lattice site to another (tyunnel = 3 x 10*A/EZB for Vi = 50EP) is negligible
over the duration of the experiment and the disordered spatial pattern of B
atoms is static.

We also require that each B atom is found in the vibrational ground state
of the local lattice micro-trap. This condition would be achieved automatically
if one raises adiabatically the optical lattice on top of a condensate cloud of
atoms B and ensures that the A atoms interact with an ensemble of identical
potentials (each centered on an occupied site), and that each scattering event is
elastic if the A atoms have sufficiently low energy: indeed, energy conservation
guarantees that the B atom is left in the vibrational ground state after scattering
with an A atom of momentum k if

h%k?

ama < hw = 2(VE EP)/? (5.4)

where w is the oscillation frequency of a B atom in a micro-trap.

The required density for the trapped particles is not particularly high for
ultracold gases standards (n < 10® atoms/cm?), and one could also start from
an atomic molasses of atoms B, that does not need to be in the quantum
degenerate regime. In this case, each of the B atoms might be cooled to its
vibrational ground state by using Raman sideband cooling techniques [71, 72].

A last point is to ensure that spontaneous emission processes are negligible
for the B atoms. In order to achieve large values of V¥ with negligible heating
of the trapped scatterers, we require the lattice to be blue-detuned with respect
to the strongest transition of the B atoms (in blue-detuned lattices, particles are
trapped in the minima of intensity of the stationary light field). Including the
Lamb-Dicke type reduction factor coming from the trapping of B atoms close



5.1 The model 75

to the nodes of the laser field, one gets the fluorescence rate

VP 3k3

rs =I'p———
fluo Wy, —wp 2mpw

(5.5)
where wy; — wp is the atom-laser detuning and I'p is the spontaneous emission
rate of B atoms.

For the bosonic 8"Rb isotope of rubidium (AB,p2 = 780nm, A\p p; = 794.8nm)
and an optical lattice tuned at A\, = 779nm, only at lnm to the blue of
the strongest rubidium transition at 780nm, at the required lattice intensity
V® = 50EP the tunneling time is ttuunel =~ 1.3s and the fluorescence rate is
I8, ~10*EP /h ~ 3571, allowing experimental times up to 300ms.

5.1.2 Model Hamiltonian for the matter wave

The matter wave to be Anderson-localized is made of atoms of another species,
that we will label by A. We shall ignore interaction effects among these A atoms.
One way to fulfill this condition in a real experiment would be to take spin
polarized fermionic atoms: s-wave interactions are prohibited by the exclusion
principle and p-wave interactions are very weak at low energies in the absence
of a p-wave resonance.

The A atoms experience interactions with the trapped species B. We model
these interactions at low energy by static contact potentials, corresponding to
infinitely-massive point-like scatterers, each located at the center of a micro-well
occupied by a B atom:

V= > et d (X4 — 13)0)r sy (T4 —15]...). (5.6)

rj€occupied sites
The coupling constant of this effective interaction is

2rh2a,
Get = 1, (5.7)

ma

a mpg
Qeff = Geff )
Gho MMA

is the scattering length of an A atom on a trapped B atom. The harmonic-
oscillator length is an, = \/i/mw and « is the A — B scattering length in free
space. The sketch in Fig. 5.3 shows pictorially how the effective interaction
arises. The value of a.¢ and the validity condition of our model potential,
Eq. (5.6), will be given in Sec. 5.3.

The A atoms also experience the optical lattice potential, with the same
spatial dependence as in Eq. (5.3) but with a different modulation amplitude
VOA. We require the optical lattice to be much closer to resonance with B atoms
than with A atoms, |wy, —wa| > |wr — wp|, such that VOA will be much smaller
than V2. In particular, we impose that

where

VA« pA = KL (5.8)
0 T 2mA °

so that, in the absence of B atoms, the A atoms can be safely considered as free.
In this respect, a particularly promising combination is given by fermionic 6Li
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A B
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Figure 5.3: Left: in free space, A and B interact with scattering length a. Center:
the B particles are trapped in micro-wells of the optical lattice. Right: at low
energy, the scattering dynamics of particles A is well described by collisions with
static point scatterers. The confinement affects the interaction strength, and
the appropriate scattering length aes is calculated via the two-body scattering
problem solved in Sec. 5.3.

for the species A (A4 = 671nm) and 37Rb for the species B: taking \;, = 779nm
and a laser intensity such that V;Z = 50EF, one finds' V' = —0.04FA.

We shall therefore neglect the effect of the optical lattice on the A atoms
and take as a model Hamiltonian for the matter wave:

h?
H=Ho+V with Hy=-——"—""A,,. (5.9)
2ma
We note in passing that in the original Anderson model the A particles were
instead assumed to be in the tight-binding regime.

In the low-energy limit, our model can be also used to describe a matter
wave scattering on an ensemble of randomly-distributed hard spheres of radius
aef- The related problem of a gas of hard spheres in a potential that is the sum
of randomly located scattering centers of random strengths was considered by
Huang and Meng in [73].

5.2 Localized states

A simple estimate shows that the setup we propose allows one to approach the
localized regime with experimentally reasonable parameters. As we will see in
Sec. 5.3, the effective scattering length presents an infinite number of divergences
that can be exploited to obtain a resonant cross-section for the matter wave,
o = 47 /k?. In this case, the Toffe-Regel criterion (5.2) reads:

kd < (4mp)'/3 (5.10)

which for a filling factor p = 10% yields kd < 1. A typical thermal wave
number can be estimated by h%k?/2ma ~ 3kpT/2 and the former condition

11f the matter wave is a gas of fermionic “°K atoms (A4 = 769.9nm), the same calculation
yields VOA = 73.6E;4. Due to the smaller detuning and the larger mass, the optical potential
would induce noticeable effects on the potassium matter wave.
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can be written as

(47Tp)2/ o2

3 makpd?®
With an inter-well distance d ~ 400nm, favorable conditions for the localization
of a SLi fermionic cloud are obtained at temperatures of order 200nK, which
can be routinely reached in present experiments.

In this Section, we numerically investigate the possibility for the disordered
model Hamiltonian Eq. (5.9) to lead to matter wave localization. A central
question is now how to obtain numerical evidence for it. Various answers have
been given in the literature, and in the following we will approach the problem
from different directions.

T < (5.11)

5.2.1 Decay of the off-diagonal elements of the resolvent

A criterion presented by Kramer and MacKinnon [26] consists in showing that,
at a positive energy F = h%k?/2m 4, off-diagonal elements of the resolvent G =
(E +1i0" —H)~! in real space decrease exponentially with the distance between
the two considered points. This is straightforward to implement numerically,
and the equivalent problem for light waves has been addressed in [35, 36]. The
resolvent in presence of N point-like scatterers can be expanded in increasing
powers of the interaction,

G = Go + GoVGo + GoVGoVGo + ... , (5.12)
Go being the resolvent of Hy. The particle propagator in free space is
'k|r—r'|

ma €

Jdo (I' — r/) = <I‘ |g0| I'/> = —Fm (513)

Assuming r, 1’ # {r;}, for the matrix elements of the second order term we find

(rGoVGoVGo| ') = g2 D 9o (x — ;) go (r; — 1) go (rs — ') +
il

9% > g0 (r—r;) { % [rgo (r)]
=L

} g0 (I‘j — I‘/) . (514)

r=0

The pseudo-potential regularizes the terms with j = [, which are otherwise
divergent;:

0

— [rgo (v)

ma ik
h? 2m

(5.15)

r=0
The higher order terms are treated in a similar way and the resulting geometric
series can be re-summed to give

27:2 Zgo (r—r;) [Mfl]jl go (r;—1') (5.16)

gl

(r|G|r') = go (r —1') +

where

+ M (5.17)
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Figure 5.4: Decay of the Green’s function as a function of the distance from the
center of the cloud of scatterers, averaged over 100 different realizations of the
random potential. The =~ 4600 scatterers (aesr = 0.3d) are distributed in a cubic
box of side 21d, occupying each site of the lattice with p = 50%.

is a N x N matrix, I the identity matrix and M a symmetric matrix with
elements defined by

oo __ eXp(ik|rj—rl|)/|rj—rl| lf.j#la
i = { ik it =1 (5.18)

The exact calculation of the resolvent in coordinates space is in this way reduced
to the inversion of a complex symmetric (not hermitian) N x N matrix. We
have implemented the criterion by Kramer and MacKinnon, and indeed we found
an exponential decay of |(r|G|r’)|* for sufficiently small energies, as shown in
Fig. 5.4.

However, as we shall demonstrate, this rapid decay may not be due to lo-
calization, but to the fact that the energy F is in a spectral gap of the system
[34].

To prove this statement, we have enclosed our lattice of scatterers in a box
of side L, imposing periodic boundary conditions on the walls of the box. This
amounts to replacing Eq. (5.13) by the particle propagator satisfying the correct
boundary conditions?:

2m elar
Box

g r)= s
0 (r) h2L3 . k2 — g2

(5.19)

with q = 27m/L and n € Z3 (a triplet of integers). Indeed we found that, for
the ensemble of scatterers used in Fig. 5.4, the ground state of the system, once
enclosed in a box of side L = 23d (slightly larger than the scattering medium),
is characterized by a wave number kpmin = 0.7202d~!. The exponential decay

2The summation must be performed numerically and its convergence is very slow, since
>a a2 ~ [dqO(1): to evaluate it efficiently, we manipulated algebraically Eq. (5.19) as
shown in Appendix C.
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shown at k = 0.3d~! by |(r |G| r')|” is therefore simply indicating that at such low
energy no state can exist deep inside the medium. In a scattering experiment, we
might imagine a plane wave coming from infinity that scatters on the trapped B
atoms: if k < kpi, the incoming wave undergoes total reflection, and inside the
random medium only penetrates an evanescent wave, that decays exponentially
from the boundary of the medium towards its interior. This example clearly
points out that an exponential decay of |(r|G|r')|* is not a sufficient criterion
to prove localization in our system, since it does not guarantee the existence of
states deep inside the random potential.

5.2.2 Direct imaging of the states

The most direct way to prove localization seems to exhibit stationary states
that are ‘localized’ inside the disordered potential, that is with a wave function
strongly peaked inside the scattering medium, decreasing exponentially towards
the borders of the scattering medium. To this end, we use the fact that the
wave function

B(r;ro) = Im (r|G(E +i07)|rg), (5.20)

when not identically zero, is an exact eigenstate® of H with energy F, whatever
the arbitrary location of its center rq. Here we take E > 0 so that ¢(r;rp)
belongs to the continuum of the energy spectrum of H, like the scattering states.

In the remaining part of this Section, we will present numerical results ob-
tained for a single realization of a random potential containing ~ 900 scatterers
that occupy the nodes of a cubic lattice with 21 sites/side, {r;}/d € [-10 : 10]3,
with a filling factor p = 10% (unless otherwise stated). The discussed features
do not however depend on this specific realization.

In Fig. 5.5 we plot the square of the amplitude of ¢ inside the scattering
medium, normalized to its value outside, as a function of the wave number k
of the matter wave. In order to avoid a choice that would break symmetry
we plot ¢2 /¢2,., where both numerator and denominator are averaged over a
few points. We define ¢2 as the average of the 6 values ¢*(riy;Tin), With ry,
chosen between the 6 values {(0.5,0,0),(—0.5,0,0), and cyclic permutations}.
Similarly, we define ¢2, as the average of the 36 values ¢?(Tout; Tin), With Tout
chosen between the 6 values {(15,0,0),(—15,0,0), and cyclic permutations},
and ri, as before. The graph reveals extremely narrow peaks, corresponding to
narrow energy intervals where the matter wave can significantly penetrate the
scattering medium.

It remains to be checked that, at these penetrating energies, the wave func-
tion is well localized inside the scattering medium. This we have verified for
a large number of energy peaks. Since the stationary wave function ¢(r;rg)
generally diverges as |r —r;|~! for r tending to the position r; of a scatterer, as
imposed by the contact potential, we introduce for each lattice node the coarse
grained density distribution

p(r € lattice nodes) = / du |p(r + u;ro)|? (5.21)
[—d/2,d/2]?

3Let |x) = G(F +in)|ro). By definition of G,
(E+1in—H)x(r) =45 (r —ro).
Taking the limit n — 01 of the imaginary part in the latter equation leads to H¢ = E¢.
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Figure 5.5: Average value of ¢? in the center of the scattering medium,
normalized to its value outside (see the text for details) as a function of
k = (2maE)Y?/h, with a.z = d, for a given realization of the disorder with
N = 900 scatterers. The energy intervals where the matter wave significantly
penetrates the scattering medium correspond to the narrow peaks in this figure.
The oblique arrow indicates the peak chosen in Fig. 5.6 to show that the wave
function is actually spatially localized in these energy intervals.
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Figure 5.6: Plot of the coarse grained distribution p(r) as a function of the
distance |r — rol, for a randomly selected energy peak in Fig. 5.5. This reveals
a localized state, whose amplitude decreases roughly exponentially towards the
borders of the scattering medium. It is centered at ro/d = (0.5, —0.5, —3.5) and
we have set a.g = d. The red line is an exponential fit, that gives a localization
length &c ~ 1.4d. The realization of the disorder is the same as the one used
in Fig. 5.5, and the corresponding peak is marked by an arrow in Fig. 5.5: it is
centered at k = 0.3695215d~! and has a half-width Ak =3 x 107°d~!.
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Figure 5.7: Poles of the analytic continuation of the resolvent G = (E + i0T —
H)~! in the complex energy plane. For bizarre or random potentials, in addition
to the poles lying on the Re(F) axis the resolvent may present a discrete set
of poles in the fourth quadrant: the associated states are the resonances of the
system.

obtained by integrating the modulus squared of ¢ over the unit cell of the lattice
around each lattice site. In practice, for a given energy F, the arbitrary position
ro is chosen numerically inside the scattering medium, on a lattice shifted with
respect to the one containing the scatterers, so that the coarse grained distri-
bution p is maximal in the lattice cell containing the point ro. In Fig. 5.6 we
plot the coarse grained density profile of ¢ for an energy corresponding to a ran-
domly chosen peak in Fig. 5.5: this indeed corresponds to a spatially localized
state. An exponential fit gives a tail of 5(r) decreasing as e~ IF—ol/éoc where the
localization length & is &~ 1.4d. Such a small value for the localization length
could seem strange at first glance for a typical physical state, and has indeed
a numerical origin. A quick estimate shows that, requiring a state centered on
r = (0,0,0) to decay significantly (let us say at least 3 orders of magnitude)
in each spatial direction along a lattice of scatterers with half-side of 10d, i.e.
e~ 104/8ee — ().001, one obtains indeed the condition & < 1.5d. The inversion
of large matrices is a very time- and resource-consuming calculation, and we
are unfortunately unable at present to investigate much larger configurations.
This numerical limitation does not affect in any way the validity of the results
presented here, and we expect larger localization lengths for bigger scattering
samples (i.e. for larger number of B particles).

After this first brute force exploration of the problem, we interpret the multi-
peaked structure of Fig. 5.5 in terms of the properties of the resolvent G =
(E+i0*t —H)~! (see Fig. 5.7). Its isolated poles at negative energies correspond
to true bound states of the potential, while at positive energies the poles form
a branch cut and correspond to the continuum of scattering states. Due to
the boundary conditions that we have imposed (i.e. the infinitesimal 0" in the
denominator of G, that guarantees that only outgoing waves are present in the
scattered wave), its analytic continuation to complex energies is regular in the
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upper half-plane, but may have a set of discrete poles along the lower rim of the
positive Re(F) axis: to each of these poles there is associated a resonance, i.e. a
state with a probability density decaying as ~ e?™ ()t and therefore a finite
lifetime 1/T" proportional to the inverse of the imaginary part of its energy,

1 h

I 2Im(E) (5.22)

If a localized state exists in our model, it must have a finite lifetime since we
are considering a scattering medium with a finite spatial extension: the tails
of the localized wave function, even if exponentially decaying, always reach the
boundary of the scattering medium, allowing the state to escape after a finite
time. A localized state must therefore correspond to one of these resonances.
The imaginary parts of the energy of the poles go to zero exponentially with the
linear size of the disordered medium, so that in the limit of disorder with infinite
extension the localized states become eigenstates of the Hamiltonian with real
energy and infinite lifetime. Strictly speaking, since we consider disorder with a
finite extension, the states we find are not “localized”. Indeed, the exponential
decrease of their envelope stops outside the scattering medium, and the states
are not square-integrable. Nonetheless, for any practical purpose these can be
considered as localized if their density presents a sufficient decrease or, equiva-
lently, if their lifetime is sufficiently long on the timescale of the experience.

In Fig. 5.5 the wave number k is swept along the branch cut, and we expect
a close connection between the narrow peaks and the poles of G: in particular, a
spike should appear each time k passes above a resonance (the closer is the pole
to the lower rim of the z-axis, the more pronounced will be the spike). As we will
see in the following Sec. 5.2.3, however, it is in general a non trivial numerical
task to find the positions of a large number of poles of G in the complex plane.
Fortunately, we are interested here only in the poles of G that are extremely
close to the real axis. We then expect that these poles leave signatures on
the real axis, in the form of purely imaginary eigenvalues of the matrix M,
defined in Eq. (5.17), with an extremely small modulus, for values of the energy
E = h%k?/2m 4 close to the real part of the poles. As opposed to the poles of
G, the eigenvalues of M can be calculated in a straightforward manner, and in
Fig. 5.8 these are shown as a function of the incoming wave number & (for two
different realizations of the disorder, in the left and right columns respectively).
We observe that, as the incoming wave number k decreases below the inverse
of the mean distance between the scatterers k = p'/3/d, a large number of
eigenvalues acquire an extremely small imaginary part and accumulate in the
region Re()\) ~ —k [74]. We expect that, as k is varied, a spike appears in
Fig. 5.5 as one of the eigenvalues with sufficiently small imaginary part crosses
the Re(A) = 0 axis in Fig. 5.8. Indeed, we have confirmed numerically on a
large number of peaks the correspondence between eigenvalues of M crossing
the Re(E) = 0 axis and spikes.

It is interesting to note that a.g enters in the eigenvalues of M only in the
simple form \; = [1/aeg+Re(A°)]+Im(AS°), where {A$°} are the eigenvalues of
M®°, as can be seen explicitly in Eq. (5.17). As we will show in the next Section,
aefr is a function of the two dimensionless ratios a/an, and mp/ma4, and in an
experiment a.gs might be easily tuned by making use of a Feshbach resonance
to modify the free-space scattering length a (or by changing the wavelength
of the lattice to modify ano,). This suggests choosing acg ~ 1/k to shift the
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Figure 5.8: Real and imaginary parts (x and y axis, respectively) of the eigen-
values of M*° (i.e. of M with aegr = 00) for different values of the wave number &
of the matter wave (units of 1/d). Left column: cubic lattice with 21 sites/side,
p = 10% and 872 scatterers, kd = 0.5 (same as in Figs. 5.5 and 5.6). Right col-
umn: cubic lattice with 209 sites/side, p = 0.01% and 878 scatterers, kd = 0.05.
The eigenvalues of M with another value of aeg are obtained by an horizontal
displacement, A; = [1/aeqr + Re(A°)] + Im(A$®). The green dashed lines mark
the values Re(\) = —1/d (left) and Re(\) = —0.1/d (right), respectively.
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Re(M\) = 0 axis in the middle of the cloud of eigenvalues (see the green dashed
lines in Fig. 5.8): as k decreases below k, one finds in this way a very large
number of eigenvalues with modulus extremely close to 0, i.e. “almost-zeros” of
the determinant of M. Each of these eigenvalues will provide a spike in Fig. 5.5
as it crosses the Re(\) = 0 axis. Seen from another point of view, each of these
eigenvalues can be transformed into a true zero of det(M), i.e. a pole of the
resolvent, by the addition of a small negative imaginary part to its energy (see
Fig. 5.7).

5.2.3 Lifetime of the most localized state

The lifetime of localized states is expected to increase exponentially with the
size of the system. To check whether our system shows such a feature, we allow
k to have an imaginary part and use a variant of Newton’s method to find a
zero of the determinant of M. We proceed as follows:

1. Start with a real value of k = ko, calculate the eigenvalues of M>°, and
set a = ap = —1/Re(\g), where )\ is the eigenvalue of M>° with smallest
imaginary part, in order to give vanishing real part to Ag.

2. Set M = 1/a; + M and add a small complex shift to the momentum,
kii1 = k; + a - 6k, where §k is given by Newton’s method* and (ko) > 1
is an empirical factor inserted in order to accelerate convergence.

3. Calculate the eigenvalues of the new matrix M, and set to zero the real
part of \g imposing 1/a;+1 = 1/a; — Re(\g) (where )\ is the eigenvalue
of M with smallest imaginary part).

4. Repeat steps 2 and 3 until convergence.

This scheme converges for small enough initial momenta (k < k), and in Fig.
(5.9) we show the behavior of the imaginary part of the energy for the pole
of the resolvent with smallest [Im(E)|: as expected, the lifetime of the state
associated to this pole grows exponentially with the linear size of the scattering
medium.

Our scheme unfortunately converges only to a single pole per given spatial
configuration of the random potential, and does not allow us to investigate the
lifetimes of the other localized states. With this method we can prove that one
state is localized, but this may not convince a sceptic of the presence of An-
derson localization in our system. Indeed, as we have shown in Fig. 5.1, even
non-random potentials can support localized states. What is peculiar about the

4Newton’s method to solve the equation det[M (k)] = 0: by iteration, find k;y1 = k; + 0k
that gives

oM
0 = det | M(k;) + ok Zon
e{ (ki) + 0k 5

M
I+6k-M‘1(lci)88—k }
k=k;

:| = det [M (k;)] det

k=k;
The desired value of the shift is given by

1
ok = —

T M)

k:ki:|

The method converges only if det[M (ko)] is sufficiently small.
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Anderson transition in 3D is that, above a certain disorder threshold, a massive
number of states becomes localized. This is clearly shown by the analysis per-
formed in the latter Sec. 5.2.2, where we have been able to put in evidence the
presence of many localized states for a sufficiently strong coupling between the
matter wave and the trapped scatterers. In the following Section we will show
that arbitrary large coupling constants can indeed be realized.

5.3 Effective interaction

We will solve here the two-body problem of a free atom A scattering on a
single trapped particle B, and derive the coupling constant geg introduced in
Eq. (5.41). The particle B is found in the ground state of its micro-well before
the interaction with A. To ensure elastic scattering, we assume that collisions
between A and B happen at an energy that is low enough to leave the B in the
ground state of its micro-well at the end of the scattering event. Approximating
each micro-well of the lattice by an harmonic potential of frequency w, we require
the kinetic energy of the matter wave to be small compared to the level spacing
of the trapping potential: this is expressed in Eq. (5.4), or equivalently by

kanoy | —2 < 1, (5.23)
ma

where  is the wave number of the A atoms and an, = \/h/mpw ~ EB/Vd/n
is the harmonic-oscillator length, ~ 50nm for the optical lattice considered.
The Hamiltonian in the absence of interactions,
RPAs  R2Ap 1

Hy=— - - 22 5.24
0 A omp + 2mb B> ( )
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admits the s-wave solution

sin(kra)

T Go(rB)- (5.25)

Yo(ra,rp) = (ra,rpltko) =
The latter represents a spherical matter wave (A) of wave vector k and a particle
(B) in the ground state of the harmonic potential, ¢o(rg) = exp(—r%/2a2,)/ (V7ano)*?,

and has an energy E = h?k?/2m 4 + 3hw/2. We model the A-B interaction with
a regularized contact potential,

H=Hy+ gd(rga —rp) (ra—rp|...), (5.26)

Olra —rp]

the coupling constant g being expressed in terms of the reduced mass p =
mamp/(ma + mp) and the free-space scattering length a (relative to the A-B
collision in the absence of the trapping potential) by

_ 2rhla
o

(5.27)

The Schrodinger equation Hiy = FE1 can be reformulated equivalently in the
integral form

P(ra,rp) =Yo(ra,rp) + g/dp GEe(ra,re;p, P)wreg(p) (5'28)

in terms of the two-particle retarded Green’s function for the non-interacting

Hamiltonian

1
Gp=— 2
BT E+iot — Hy (5:29)

and the regularized part of the two-particle wave function,

Ureg(R) = llea —rpl (ra,rs)) (5.30)

Olra —rp fa—rp

where R = (rg +rp)/2 and ¢es(R) = treg(R) since we consider s-wave scat-
tering only. Inverting Eq. (5.28), we find that the regularized part of the wave
function satisfies an equation of the form

~ I ~
reg — T A~ s 5.31
7/) g I_ gO"/)O ( )

where O is an integral operator, and z/;(R) = RY(R). The detailed derivation
of this equation and the explicit form of O are presented in Appendix D.

The integral formulation of the Schrédinger equation is useful to derive an
effective interaction that in the low energy limit describes the A-B collision in
terms of a simple contact interaction. In order to see how, we expand G on
the basis of eigenstates of Hy,

[ [Yc.n) (rcnl
Gp = / 5 Z BT B (5.32)
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and project it in position space to obtain

2ma { eiklra—pl

2 (rB)9o(p)

Gp(ra,re;p,p) = 747T|I‘A—p|¢0

 —bulr)on(p) | . (533)

Under the low-energy assumption (5.4),

2,2
R kg

k2
B 2ma - 2mn

— hw (ng +ny +n;) < 0 for every n # 0.

As a consequence, the terms of Eq. (5.33) involving excited states of the har-
monic oscillator give exponentially vanishing contributions and can be neglected
when A is far away from the center of the harmonic well. Expanding |ry — p| ~
ra—pra/ra,averaging over the direction of r 4 and substituting into Eq. (5.28),
we get

T —00

w(rAarB) =
sin(kra) ma exp(ikra) sin(kp)
ra) A LRI [ 4 S g 1)) ontr). (530

We know that the scattering solution (5.28) can generally be written as

exp(ikr
+ fr p(ikra)

ra—e [gin(krg
wirarp) = { I{ET‘A) TA

} do(r5), (5.35)

the factorized form being ensured by the low-energy scattering condition (5.4).
Comparing (5.34) and (5.35), we obtain the scattering amplitude

fi==a" [ ap =50 g0 )0cs o) (5.36)

In the limit of zero-energy, the scattering amplitude defines the effective scat-
tering length aeg through

oo = = Jim i = 0" [ dp du(p) s (5.37)

For low but non-zero energy, the effective range r. of the effective interaction is
obtained by inverting Eq. (2.36),

2 1 1
Te = ﬁ |:R€ (ﬁ) + @] . (538)

As seen in Chap. 2, a contact potential has strictly vanishing effective range,
and can be used consistently to replace a more complex two-body potential only
if the effective range correction is negligible, i.e. only if

kre < 1. (5.39)
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We will see in the following that generally r. ~ ano, and the latter condition
usually reduces to the one for elastic scattering, Eq. (5.23).

Under the low-energy conditions stated in Egs. (5.4) and (5.39), the collision
between the free particle A and the particle B, trapped in a harmonic well cen-
tered around r;, can be completely described in terms of the following effective
interaction acting on the free particle A:

0

Olr — ry|

Vett (1) = geed(x — 1) (Ie—r5]...). (5.40)

The coupling constant of the effective interaction is

2mh2ae
ot = —— (5.41)

ma
where aeg is given in Eq. (5.37) and we have m4 rather than p in the denomi-
nator since we consider the collision of A with a static potential.

As seen in Eq. (5.37), the effective scattering length aes depends explicitly on
the regularized wave function, which in turn is the solution of an integral equa-
tion, Eq. (5.31). The latter must be solved numerically, but analytical results
may be extracted in the limit of weak trapping w < (1 + mA/me2 h/m aa®
(or equivalently ano/|a| > (1 + ma/mp)/ma/mp), where an expansion to
lowest order of (5.31) gives &reg = 1) (so-called Born approximation) and

Geff Born = a%- (542)
I
When the trapping is very weak, the B particle is almost free and the effective
coupling constant g.g correctly reduces to g, the coupling constant in free space,
given in Eq. (5.27). In the same limit, an expansion of the scattering amplitude
for small energies gives the effective range for the interaction:

2
£ Tho (5.43)

Te,Born —
ma a

We have solved numerically Eq. (5.37), and in Figs. 5.10-5.12 we plot aes
as a function of 1/a for different values of mp/ma. We choose mp/ma =
0.15,1,6.67, corresponding to the physical cases of a mixture of °Li (B) and
40K (A), a mixture of two different internal states of atoms of the same species,
and a mixture of “°K (B) and °Li (A), respectively. In Figs. 5.11 and 5.13 we
also plot the behavior of the effective range in the case mp = m4: r. is generally
of order ape, but diverges when a.g — 0, as explained in Sec. 2.1.

The effective coupling constant shows an infinite set of resonances due to
the presence of the external confinement. A similar effect, termed confinement-
induced resonance (CIR), has been been analyzed theoretically in 1D wave
guides [75, 76, 77], in 3D optical lattices [79], and in quasi-2D condensates
[78]. In 1D wave guides the effect is particularly marked: due to the presence of
the transverse confinement, a contact potential acquires a bound state for any
value of the 3D scattering length (while in free space it is well known that a
contact potential has a bound state only for a > 0). Confinement-induced mod-
ifications of two-body scattering properties have very recently been observed
experimentally by the Ziirich group in 1D waveguides [80] and in 3D optical lat-
tices [81]. In most of the cited articles, the underlying translational symmetry
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Figure 5.10: Effective scattering length a.g (continuous line) as a function of
a~! for mp/ma = 0.15 (trapped °Li and free “°K). The vertical lines (red)
mark the positions of the resonances (a step of ap,/a = 0.01 is used to sample
the curves, and some of the resonances are too narrow to be seen on the graph).

and the harmonic nature of the confinement allow for the factorization of the
center-of-mass motion: this in turn implies that a single CIR can exist in such
systems, since only one state in the closed channel is coupled to the open chan-
nel [76]. When this factorization is not possible, as in our setup or in the case
of a 1D wave guide with anharmonic transverse confinement [77], an infinite set
of states in the closed channel has non-zero overlap with the open one, and an
infinite number of resonances appears. In practice however only a few of them
may be resolved and relevant in an experiment since they become increasingly
sharper as ano/a becomes larger.

5.3.1 Resonances of the effective scattering length

The resolvent G 1 is purely real in the limit & — 0 [see Eq. (5.33)]: O turns out to
be real and symmetric, and all its eigenvalues {\;} are as a consequence real as
well. This means that a resonance in a.g is expected whenever the denominator
of Eq. (5.31) vanishes, i.e. whenever the free space scattering length a equals
u/2mh?\;. These resonances have different origins, depending on the sign of a.

5.3.1.1 Positive a

When a > 0, the pseudopotential admits a bound state in which the two particles
can “sit” for a variable time, forming a molecule that oscillates in the harmonic
well. To understand this point, we rewrite the two-body Hamiltonian (5.26) as

1
+ —m3w2r2f§m3w2R~r , (5.44)
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Figure 5.11: Same as Fig. 5.10 for two particles of equal mass. The blue dashed
line is the effective range r., and the magenta dotted line is r. porn, Eq. (5.43).
A green dot at a = —1.6an, marks the position where aeg ~ d if V¥ = 50E5.
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Figure 5.12: Same as Fig. 5.10 for mp/m4 = 6.67 (trapped *°K and free °Li).
The dashed line i e, Born, Eq. (5.42).
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Figure 5.13: Energy dependence of the scattering amplitude for two particles
of equal mass at a = —1.6ay, (green marker in Fig. 5.11). The linear fit at low
energy, Re(1/fy) = —1/acq + rck?/2, yields r. = 1.135an, (units of a;’ and
a}jol on the z and y axis, respectively).

and treat the terms in the square parenthesis as a perturbation. The unper-
turbed part admits the factorized eigenstates 12, = ¢an,(R)x(r) that describe a
bound molecule with x(r) = exp(—r/a)/v2mar and center-of-mass in an eigen-
state of the harmonic oscillator. Since both the initial state and the Hamiltonian
are spherically symmetric, conservation of parity allows only even intermediate
states. Within this unperturbed approximation, a.g diverges each time the en-
ergy of the oscillating molecule corresponds to the ground state energy of the
pair of atoms, i.e. at the values of a = a,.s that satisfy

3 mp h2 3
2 — | hw, / — = —hw. 4

As can be seen in the upper part of Fig. 5.14, this formula describes the position
of the resonances with a > 0 in a wide region of the graph, since corrections to
it are only O(a/an.)?. In fact, to first order in the perturbation series the term
r? gives a shift equal to

1
SEMD — T (a/ano)? (5.46)

while the term R - r gives zero to first order, and a complex shift proportional
to (14 i/2)hw (a/ane)” to second order.

5.3.1.2 Unitarity limit

In the unitarity limit 1/a = 0, the presence of at least one resonance can be
demonstrated by a variational argument. As discussed in Chap. 2, a contact
potential characterized by scattering length a can be replaced by the simple
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boundary condition (R, r) "=’ C(R) (r~! —a~!) + O(1), where C is an arbi-
trary function of the center of mass coordinate R. The s-wave Ansatz

) exp (77"2/02) 7

Y(R,7) = Nexp (—R*/\° -

(5.47)
with A\ and o variational parameters, satisfies the boundary conditions imposed
by a unitarity limited contact potential, i.e. characterized by 1/a = 0. Its energy
can be calculated from the Hamiltonian (5.44) without the interaction term: the
term R - r has a vanishing contribution when averaged over this state, and the
energy assumes the minimum value

3 mp 1 mp
E® = chw, [ ————— 4 chw, [ —. 4
2 ma+mp + 2 4u (5.48)

We might imagine continuously tuning a from 07, where no bound state can
exist, towards —oo. If E*° < 3hw/2 (i.e. if mp/ma < 1.275) a bound state for
1/a = 0 is guaranteed by the former Ansatz, and at least one resonance for aeq
must exist in the a < 0 region.

5.3.1.3 Negative a

When a < 0 and mp/ma < 1, the position of the resonances can be found with
the aid of a mean-field approximation. We can write an effective Hamiltonian
for the particle A supposing that the particle B remains in the ground state of
the well for the duration of the scattering event, thereby creating an effective
Gaussian attractive well:

h2k? B 2wh?|al exp(—r% /a3,)
2ma mp (ﬁaho)?’

As argued above, the characteristic range of the potential is of order apo. This
Hamiltonian can be easily solved, and predicts a divergence of a.g whenever the
combination (|a|/ane)(ma/mp) equals the critical value for the appearance of
a new bound state (see Fig. 5.14, dashed lines in lower graph). We expect this
approximation to work when k.q|a] < 1, where k;o) ~ kg —kamp/ma. B is
in the ground state of the harmonic trap, and kg ~ a;ol, while A is accelerated
by the attractive Gaussian potential and acquires a maximum kinetic energy
k% /2ma ~ g/(\/Tano)®. Therefore, the two conditions |a|/an, < 1 and
(mp/ma)(|al/an.)® < 1 should be simultaneously satisfied.

Heog = (5.49)

5.4 Experimental outlook and conclusions

We have presented in this Chapter an appealing setup that makes it possible
to obtain a disordered potential and a matter wave satisfying two important
conditions for the observation of Anderson localization.

On the one side, correlation lengths for the disorder as short as 0.5um can be
obtained, much shorter than the ones realized presently with speckle potentials.
As we have shown, our setup permits to fulfill the Ioffe-Regel criterion

A1 (5.50)
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Figure 5.14: Position of the broadest resonances for positive (upper graph) and
negative (lower graph) a as a function of mp/m4. The dashed lines are the
theoretical predictions, given by Eq. (5.45) for ¢ > 0 and by the Hamiltonian
in Eq. (5.49) for ¢ < 0. In the upper graph, from top to bottom symbols
correspond to n =4,3,2,1 in Eq. (5.45).
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for a cloud of °Li atoms already at a temperature of order 200nK, that can
routinely be obtained in present experiments. On the other side, the use of po-
larized fermions for the matter wave would also allow one to completely turn off
interactions in the matter wave. As discussed at the beginning of this Chapter,
this is important since interactions tend to shield localization effects.

To describe the system, we have modeled the trapped scatterers with a set
of contact potentials, and demonstrated that the effective coupling constant
shows interesting confinement-induced resonances (CIRs) in a region accessi-
ble by present experiments. Exploiting a CIR, experimentalists might obtain a
unitarity-limited interaction between the matter wave and the disordered poten-
tial. By the exact calculation of the resolvent in coordinate space, we have been
able to show directly that our disordered potential, when strongly coupled to
the matter wave, supports at low energy a massive number of localized states,
i.e. eigenstates with exponentially decaying envelope.

We discuss now possible strategies for the practical implementation of our
setup. The onset of Anderson localization may be observed in a typical expan-
sion experiment, mapping the cloud size as a function of the amount of disorder.
Here below a possible experimental sequence is presented:

1. cool a mixture A — B in a usual harmonic trap.

2. raise the optical lattice to the desired intensity, and ensure that each
scatterer B is in the vibrational ground state of its micro-well.

3. let the system equilibrate.

4. switch off the harmonic confinement (but not the optical lattice) so that
the matter wave will expand freely in the presence of the disordered po-
tential.

5. since we are interested in studying the dynamics of the matter wave in
presence of a static potential, we want to get rid of the A — B relative
acceleration imposed by gravity. This can be achieved in different ways:

e set the experimental reference frame (i.e. the disordered potential)
in free fall, by applying an appropriate time-dependent frequency
shift to some of the lasers building the optical lattice (the two in the
vertical direction). In a similar setup, a 50cm long vacuum chamber
would allow up to 300ms of observation.

e set the whole laboratory frame in free fall, by performing the exper-
iment in a micro-gravity environment, e.g. at ZARM?®, on airplanes
performing parabolic flights®, or on an orbiting space station”.

e compensate gravity by using magnetic levitation of the matter wave
(though, this technique generates an expulsive potential in the hori-
zontal plane, which should be taken accordingly into account in the
calculation).

5ZARM is a 120 meters high drop-tower facility in Bremen, Germany, that provides 4.5s
of micro-gravity. An experiment with BECs will be realized there in the close future [82].

S Experiments with atomic clocks on parabolic flights have been reported in [83]. Parabolic
flights provide up to 20s of micro-gravity.

"Experiments with BECs on the International Space Station have been planned by the
European Space Agency.
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6.

7.

let the system evolve: the extended states will escape from the disordered
potential, while the localized ones will stay trapped inside.

measure the size of the cloud after expansion as a function of the expansion
time, the size of the trapping potential (N), the amount of disorder (p)
and/or the coupling strength (des).

As aefr increases from 0 to a sufficiently high value (aes ~ d), we have shown that
the spectrum of the Hamiltonian contains more and more localized eigenstates,
and we expect consequently that the expansion of the cloud will be more and
more inhibited.

Doubts might arise about the quantum or classical origin of the reduced
expansion. As we will show now, classical trapping is completely ruled out in
the proposed scheme, and the reduced expansion could only be attributed to
quantum interference, i.e. to Anderson localization.

The low-energy scattering condition, Eq. (5.4), forbids by energy conser-
vation the formation of a A — B stationary bound states.

Two identical fermions of mass m 4 in the same quantum state, interacting
with another particle of mass mp might undergo the formation of Efimov
bound states if m4/mp > 13.6, implying a possible loss mechanism [84].
This would be avoided in our proposal, since for the pair °Li(A)-8"Rb(B)
one has m4/mp ~ 0.07.

Three-body collisions might actually lead to the formation of a bound
state, since when aeg > 0 the effective interaction admits a bound state.
Those encounters are anyway strongly suppressed by the Pauli principle,
since they would forcefully imply the presence of two identical fermions of
type A in a very limited region of space.

If necessary, three-body recombination could be avoided by employing a
low density for the matter wave.

The condition Vi*/E# < 1, Eq. (5.8), ensures that the matter wave is
sufficiently shielded from interacting with the optical lattice.

For all the reasons explained above, we believe that our proposal offers a viable
route to the experimental observation of three-dimensional Anderson localiza-

tion.






Chapter 6

Conclusions

The main results presented in the thesis are here summarized.

In Chap. 3 we analyzed the properties of charged impurities in a uniform
Bose-Einstein condensate, showing that important modifications of its density
profile can be induced by a single ion. By a thermodynamic argument we
demonstrated that the excess number of atoms AN around an ion is propor-
tional, in the limit of low condensate density, to the ratio of the atom-ion and
atom-atom scattering lengths [Eq. (3.13)]. For higher densities, we solved the
Gross-Pitaevskii equation for the condensate in the presence of different model
potentials, which included between others a 3D attractive square well and a
long-range potential that closely resembles the ionic one, and evaluated AN
numerically. For low bulk densities, we found excess numbers of atoms in agree-
ment with our thermodynamic result. With increasing mean-field interactions,
we showed that pairs of solutions with equal number of nodes become degener-
ate and disappear, implying a discontinuous behavior that could be observed in
experiments [Fig. 3.5].

Chapter 4 is dedicated to the study of a strongly interacting Fermi gas in its
normal phase in the context of transport theory. For a uniform system, we found
how the temperature dependence of the viscosity is influenced by interactions,
and showed how through the viscosity one may define a viscous relaxation rate
1/7 which gives informations on the typical collision rate inside the gas. We cal-
culated 1/7 for a trapped gas as a function of both temperature and interactions,
and showed that classical hydrodynamics should not be applied to describe the
transverse oscillations measured in the experiments performed by the groups
at Duke and Innsbruck Universities [Fig. 4.3]. By a variational solution of a
Boltzmann equation containing interaction effects in both the streaming terms
and the collision integral, we extracted the frequency and the damping of the
axial and radial collective modes of interest in current experiments as a function
of temperature and interaction strength [Figs. 4.6-4.9]. We pointed out that at
sufficiently high temperature (T 2 Tr) the frequencies of both collective modes
should approach the value given by collisionless theory.

In Chap. 5 we addressed the possibility of observing Anderson localization in
three dimensions using ultracold gases. A disordered potential can be realized
by trapping atoms in the sites of a deep optical lattice with a small filling factor.
The dynamics of atoms of a different species which interact with the trapped
particles but not with the optical lattice could then be exploited to show the
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presence of quantum localization. This scheme completely rules out the possi-
bility of classical trapping, and may be realized experimentally in a mixture of
8TRb and spin-polarized °Li with a strong optical lattice tuned just to the blue
of the strongest rubidium transition. We have shown that the interaction of the
matter wave with a trapped scatterer can be successfully modeled by a contact
potential. Through the exact solution of our model Hamiltonian (describing a
non-interacting matter wave in the presence of a randomly-distributed ensem-
ble of point-like scatterers of strength ges), we have been able to show by direct
imaging that at sufficiently low-energies and strong-couplings our model Hamil-
tonian supports a large number of exponentially decaying eigenstates, i.e. local-
ized states [Figs. 5.5 and 5.6]. To conclude, we solved the two-body problem
of a matter wave colliding with a trapped scatterer and calculated the effective
coupling constant ges [Figs. 5.10-5.12]. The trapping strongly modifies the free-
space scattering properties, and we have found for geg an interesting infinite set
of confinement-induced resonances, that may be exploited in the experiments
to obtain the large coupling strength necessary for Anderson localization.



Appendix A

Interacting gas in a 1D square
well

It is instructive to examine a one-dimensional model which can be solved analyt-
ically in terms of Jacobi elliptic functions. We consider a square well potential,

400 z <0
Vie)=9 -Zh  o<z<L (A1)
0 x> L,

and investigate its (real) stationary solution, that represent either continuum or
bound states.

A.1 Continuum solutions

We look first for continuum solutions whose density per unit length approaches
the constant value ng = /Uy outside the well:

h2v2

2m

+V +Ugp? | ¢ = wp. (A.2)

We write their chemical potential, which is positive, in terms of a wavenumber
k according to

h2k?
= (A.3)
and similarly the 1D interaction term as Uy = h%u/2m.
Outside the well (x > L) the GP equation reads
O 4 u® = k2. (A.4)

Multiplying by ¢" and integrating we find

W = [t — k2% + “71/’4 (A.5)

where the integration constant ¢t = k*ng —un3/2 is chosen to satisfy the bound-
ary conditions ¥?(c0) = ng and ¢/ (c0) = 0. Outside the well we have 4 possible
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solutions,

Do = +./no tanh [k:(x — a:o)/\/ﬂ (A.6)
out £/ coth [k(z — x0)/ V2] '
the offset zy being a free parameter.
Inside the well a similar treatment gives

W=ty fg— w2 4

where k2 = k3 + k? and ¢ = k*/2u + kZy(L)? is fixed by the conditions of
continuity of the wave function and its derivative at the boundary x = L.
Inside the well the solution is then written in terms of a Jacobi elliptic function
[85]:

Yin = 1 - sn(yz|m), (A7)
where ) .
+ /Kt =2
Ti:—n = uq7 mi:ﬁ, and v = /%. (A.8)
U 2q ri
Since m4 - m_ =1, the identity
sn(z, m) = —=sn(v/m -z, —) (A.9)
x, m)= NG mez, — .

can be used to demonstrate the equivalence of the two solutions (generated by 7
and r_): we will limit ourself to consider the (-) one, for which 0 < m < 1. The
m parameter continuously deforms the Jacobi sn function from a sine (m = 0)
to a hyperbolic tangent (m — 17). The period of the sn(vyx|m) function is given
by 4K [m]/v, where K[m)] is the complete elliptic integral of the first kind [85]:
K[m)] is also called quarter period and assumes the limiting values K[0] = m/2
and K[m — 17] = co. For a given value of ng, the solutions can be found by
solving the equation ¥, (L) = ¥out (L) for the free parameter g, subject to the
condition

a7y | mocoth® [k(L — z0)/V2] 5 k3
P (L) = { nStanhQ [k(L _ 3?2)/\/5] } < Yrp = no(l + 2u20)7 (A.10)

which ensures that the coefficients r, vand m will be real (the condition is au-
tomatically satisfied for the tanh solutions).

Since the GP equation is a nonlinear differential equation, we expect to find
many different solutions for the same boundary conditions (i.e. the same bulk
density ng). The existence and the number of nodes of the various solutions are
connected to the value of the parameter p = Lvy/K[m], whose integer part gives
the total number of quarter periods of ¢i,, the wave function inside the well. In
general, for a solution with z nodes, p is constrained by the condition 2z — 1 <
p < 2z+2 [see Fig. (A.1)]. For 2z2—1 < p < 2z+1, the solution has a tanh shape
outside the well, and zy decreases as p approaches 2z+1. When p = 22+ 1, the
solution has vanishing derivative at the boundary and connects to the constant
Yout = E£4/ng outside; when 2z + 1 < p < 2z + 2, the solution assumes a coth
shape outside the well. As can be seen in Fig. (A.2), 9p/dng is always positive:

therefore a solution with z nodes exists only for densities no > n{%), (=)

is the solution of the equation p(n(z)) = 2z — 1. Fig. (A.2b) shows that this

crit

, where n,
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Figure A.1: Amplitude of wave functions with z = 4 nodes (x-axis is in units of
the well width). The 2 images on the left (a,b) show tanh solutions (7 < p < 9),
the one on the right (¢) contains a coth solution (9 < p < 10). The plots in
Figs. (A.1-A.3) are obtained for ko - L = 8 and u ~ 2500.
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Figure A.2: Contour plots of p as a function of x¢/L (x-axis) and noL (y-
axis) in the case of tanh-like (left) and coth-like (right) solutions. The isolines
show p = 10,9,8,... (from top to bottom). The dashed arrows evidence the
path followed by the solutions with 4 nodes, and the stars mark the points
corresponding to the states shown in Figs. (A.la,b,c). For these parameters,
ngfi)tL ~ 0.05. The condition stated in Eq. (A.10) is violated in the region filling
the lower-right corner of the right graph.

solution can be followed up to unlimited bulk densities: p increases continuously
from 0, on the right side of the plot, to a finite and positive asymptotic value on
the left side of the plot; its integer part must assume all values between these
two limits and therefore no state can disappear.

In Fig. (A.3) we plot the excess number of atoms trapped by the 1D square
well as a function of the bulk density.

A.2 Bound levels

We look now for bound solutions, characterized by a negative chemical potential

h2k?

om

"= (A.11)
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Figure A.3: Excess number of atoms as a function of the bulk density. Shown
in the picture are the results given by states with a number of nodes z between
0 and 5 (from top to bottom). The continuous lines are coth-like states, while
the dashed lines are tanh-like states.

We normalize the (real) condensate wave function ¢ (z) to unity,

/OO dry?(z) =1, (A.12)

0

which implies that the coefficient of the nonlinear term in the GP equation will
be proportional to the number of atoms, u = 8t Na (N is the number of atoms
per unit area and «a is the scattering length).

In the region « > L, the GP equation reads as in Eq. (A.4), and the boundary
condition of vanishing ¢ at infinity gives ¢t = 0 in Eq. (A.5). The solution outside

the well is
kv/2/u
lz) = sinh[k(z — L) + ¢ (A-13)

where ¢ is a proper integration constant. In the region z < L the solution is
given by (A.7) and (A.8), with x? = kZ — k? and ¢ = k3v(L)?. The chemical
potential associated with a given number of particles can now be determined
through the normalization of the wave function. We are interested in determin-
ing the maximum number of particles that can be trapped by the potential and
therefore let k — 0 (i.e. k> ~ k2) in the expressions (A.8) . When the potential
is sufficiently deep that koL > 1 the interior wave function is nearly flat every-
where, corresponding to the limit m — 1. The sn-function is then proportional
to a hyperbolic tangent over most of the interior region. In the Thomas-Fermi
approximation, it can be seen that the condition u < k3 L must be fulfilled. The
next term in the expression can be found as follows.

Since we want to match the solution inside the well with the one outside, r2
must be real; in the opposite case v becomes imaginary, the solution acquires a
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Figure A.4: Plot of the limiting tanh functions.

positive derivative at the boundary and connects to an asymptotically divergent
solution outside. Imposing the condition k£ — 0, we obtain
ko

Vi (L) ~ (A.19)

that leads to 7 = ko/\/u, m = 1, v = ko/+/2 and therefore

Vi(z) = % - tanh (%x) . (A.15)

This wave function is clearly a limiting one, since the hyperbolic tangent
never shows a decreasing derivative, necessary to match with the solution outside
the well. In the limit of very deep well, we know the density will be relatively
flat inside the well and symmetric with respect to the point = K (m)/v (where
K (m) is the complete elliptic integral of the first kind), located somewhere in the
middle of the well; a reasonable trial wave function inside the well can therefore
be constructed as:

Y1(x) = r-tanh (yx) 0
Po(x) = r-tanh (B —~z) %

where 3 = tanh™* (1/\/5) + L, so that 1o(x = L) = ¢(L). In Fig. (A.4) we
show a sketch of the above function.

The logarithmic derivative at the boundary is 5 (L)/12(L) = —ko/2 and the
condition for the continuity of derivatives at the boundary therefore coincides
with the condition of vanishing discriminant, Eq. (A.14). The norm of the wave
function is calculated as follows:

(A.16)

7’2 7’2
2 2 2
9 T r r 1, 1 ~L
=L—+ — —tanh [tanh™ (—&—=) + — A.18
P2 2 \/5 Sy y (\/5) 2 ( )
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2 k
2=1/2w(L) == A19
=)o) = = (4.19)
To leading order in 1/koL the normalization condition becomes
k2 k
1=0L— 22 (vV2-1). (A.20)

umam umaz

Evidently, the number of trapped atoms in a single level of the potential (which
enters the parameter u,,,,) is restricted since to the given order one has

Niaz 1 k2 ko
= = — ——=(V2-1)]. A.21
Mmas = T T e | 2 L (V2-1) (A-21)
The first term, which is the dominant one in the limit considered, is seen to be
identical with the result obtained using the Thomas-Fermi approximation, while
the second term represents smaller corrections, originating both in the interior
and the exterior region.

A.3 Discussion

In Fig. (A.3) we show that the excess number of particles caused by the 1D
square well decreases as we increase the bulk density, and is higher for states
with smaller number of nodes. The same features are shown by both the 3D
square well and the ionic potential analyzed in Secs. 3.3 and 3.4.

The 1D model fails in predicting many of the characteristic features of the
polarization potential in 3D. As we have seen in Sec. A.1, states with a definite
number of nodes exist in 1D in a range of bulk densities bounded from below
and not from above, with the consequence that no state would disappear with
increasing density (and that states with unlimited number of nodes are allowed
in the high density limit).

The square well in 3D instead gives a complete qualitative description of the
full ionic model. In particular, it correctly predicts that pairs of states merge
and disappear for increasing density. In addition, the excess number of atoms
for the state with highest number of nodes follows the dilute limit prediction,
Eq. (3.13).



Appendix B

Moments of the Boltzmann
equation

In this Appendix we provide details of the calculation of the matrix, from which
the frequencies and damping rates can be extracted.

First we state some useful identities involving the momentum variables p;
and the rescaled position variables 7; = mw;r; (i = z,y, 2):

(p3p3) = 3(n3p}), (B.1)
together with
(pipy) = %kaTEkin (B.2)
and
(#92) = 5m*KT By (8.3)
From these it follows that
(#°p) _ Epot _ Epot 1 . (B.4)

(P2p2) ~ Fun  Epot — 3Eme/2 1-€

Similar identities hold for the other components of p and ¥. They are valid both
in the presence and absence of the mean field in the equilibrium Fermi function
0.

The following identity holds when the mean field is neglected in the equilib-
rium Fermi function:

_ d3p _ afO
mg(i*n®) = mg/ Gnh) /d?’r in? (—mk:T%
0 2
:m2k:Tg/d3r [(n0)2 —|—5cai~n0] = m—kTEint. (B.5)
0z 2
This implies that
mg(7%n°
9t _ ) e (B.6)
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In order to obtain the matrix determining the collective modes we insert
(4.66) into (4.64) and take moments of (4.64) with 72, resulting in

—iw[(?)al +as +a3) <.’I~J2g2> + (Cl +c2 +C3)<§?2pi>] +wzb1 Aq —l—wbeAg +w,bzAs = 0.
(B.7)

Multiplying the equilibrium equation (4.57) by the combination Z*yp, and in-
tegrating over all phase space, we obtain the equality

(#292) — (@) — mg(@ 2y = 0. (B3)

Using the identities given above and Eq. (B.8), we find

- 8n
A = (P9) - @)~ mg@ o) =
~2 2 ~2~2 _,_Ing
= <Ip;>-3<IY >—3mg<ym%>——2<x > . (B.9)
~2 2 ~2~2 ~2~an0
Ay = (T7py) — (T777) — my(Z ya_g> =0. (B.10)

The constant As also vanishes for the same reason as A,. Collisions do not
appear in (B.7) since the 7 and 7;p; are collision invariants, i.e. I[7?] = I[7;p;] =
0. We now divide Eq. (B.7) by (#?p2). The ratio (Z%52)/(2?p2) has a very weak
dependence on temperature! and we have checked that it introduces frequency
shifts of only second order in ¢ in all the modes. To our level of approximation,
we can use here (72§%)/(#?p2) ~ 1. This yields

—iw[3a1 + az + a3 + ¢1 + c2 + 3] — 2wyby =0, (B.11)

that constitutes the first line of our system of coupled equations.
Next we take moments with Zp, and obtain

—iwby (F2p2) + w.[2(2%p2) (a1 — 1) + c1m*ET Bingy + B] = 0, (B.12)

where B is given by

b= <f0(6f0)(f0 %io)>_

2
= —mg(i*n®) Z ai—mTk:TEint Z Ci (B.13)

1=T,Y,2 1=,Y,z
Dividing Eq. (B.12) by (#?p2), we obtain the second line of our linear system,

—iwby + w[(2—&)(a1 — 1) — &(ag + ca + ag + ¢3)] = 0. (B.14)

1Using the non-interacting Fermi distribution to evaluate (B.8), it is easy to show that

@9%) _ | mg(@§on°/0g) _ [ 1+3¢/4 for T < Tp
(%2p2) (#2p2) 1+¢/2 forT>TF.

The difference between the two results is small since in our first order treatment we allow only
for interaction parameters & < 0.5.
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Finally, we take moments with p2 and divide by (p2p?). Neglecting collisions,
a procedure similar to the one that led us to (B.11) yields

1
—iw T 5(al +ag +az) + 3¢y + o + c3| + 2wiby = 0. (B.15)
Unlike 72, #;p; and p?, the quantities p? are not separately collision invariants
and the collisional terms, involving quantities like (p31[p?]), do not vanish here.

We note that

(02 +22) TI53)) = —5 (21TR20) (8.16)

N | =

(P3Ip3)) =

i) = {(n-2)1[2-2]) (B.17

({p*I]...]) = 0 due to spherical symmetry) and

(pip}) = % <(pi — %2)2> : (B.18)

Using the angular symmetry between the | = 2 polynomials p,p, and p2 —p?/3,
Eq. (4.44), we find

allpyl) _ 2((@2 —p*/3) L[z —p°/3]) _ 2((papy) Ilpapyl) 2
Wiy 3 (-3 5o wen?) 3T
(B.19)

where the average viscous relaxation rate 1/7 has been defined in (4.52). In-
serting the collisional terms in (B.15), we arrive at

49 2
(a1 + ag + ag) + <3 + E) C1 + <1 — E) (62 + 63):| +2wzb1 = 0
(B.20)

that constitutes the third line of our system of coupled equations. The other six
equations may be obtained from (B.11), (B.14) and (B.20) by simple permuta-

—iw

1
1—¢

tion of the indices, and the coefficients of a,,ay, ..., c. build up the following

matrix:
Jiw 2wy, W w 0 W w 0 Tw

E—2w, iw (2= ws Ewy 0 Ewy wy 0 Ewy

;’fE —2w, 3w — 5= ;’fE 0 iw+ = ;’fE 0 iw+ =
w 0 w 3w 2wy w w 0 w
Ewy 0 Swy (€ _,2) Wy iw (2= 8wy Ewy 0 Swy
i 0 iw+ = i —2wy,  Biw — 3 i 0  iw+t =
iw 0 W iw 0 W Jiw 2w, iw
§w: 0 Ew, fw 0 Ew, €-2w, w (2-§w,
=g 0 iw+g 1% 0  iw+Z e 2w, Biw— g |







Appendix C

Green’s function for a particle
in a box

We wish to calculate the Green’s function for a free particle of energy £ =
h%k? /24, imposing periodic boundary conditions in a box of side L. The Green’s
function go(r) satisfies the equation

hQ
(V2 + k2) g3 (r) = d(r), (C.1)
24
that can be inverted to obtain

eiq~r

Box 2#
90 ( ) FL2L3 S ]{?2 _ q2' (02)
The periodic boundary conditions impose q = 27n/L, with n € Z3 (a triplet
of integers). The sum must be evaluated numerically, and the convergence is
very slow, since > q 2~ [dqO(1). To accelerate the calculation, we add and
subtract the quantity X, = - exp(iq - r)/(A\* + q*), where X is an arbitrary
quantity with units of momentum, obtaining

Box (1) L3 X4 ()\2 n k2) Z elar (C.3)
90 om A - @) (2+q) .

The interest of this procedure lies in the fact that X can be rewritten as a series
of exponentially decreasing real terms!, and the remaining series converges faster
than the original form, since Y., q™* ~ [dgO (¢7?): truncating the complex

1We use here the Poisson’s formula,
D fm) =) f(2mm)
n n

where n € Z3 and f(p) = Jgs dre~P9f(q). The Fourier transform of f(q) = exp(iq-r)/(q?+
A2) can be calculated analytically by the methods of residues, and we finally find

etar 7)\Hr Ln||

X*_quq 47rzn: |r — Ln|| ’

|[v|| being the Cartesian norm of the vector v.
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series t0 Npayx terms, the error is ~ O(N1 ). The procedure can be iterated
one more time, yielding

2 2
p —Alle—Ln]| 1 Atk
2h? zn:e Ic—LIn]  2x

2 (A2 + k2)° oiar
* h2L3 Z (k2 — q2) (A2 + @)% (C4)

9™ (r) = -

The error due to the truncation of the last term on the right hand side is in this
way reduced to ~ O(N,2.), and the calculation of g8°* can now be performed
very efficiently. When r — 0, the term with n = 0 contains the expected 1/r

divergence, and the regular part of the Green’s function reads

Box oy _ __ M) AP+ appe [ MR
Go.res(r) = 27th{ A S D DI AT

nez3*

2 (A2 + k2)° 1
+ “(h2L3 L o (©9)
5 (k*—a?) (M +q?)

where Z3* = 73 — {0,0,0}. The final result is of course independent of .



Appendix D

Integral equation for tes

The Feynman propagator K associated with the non-interacting Hamiltonian
Hy [86],

Ki(ra,rp;pa, pp) = <I'A;I'B ‘eﬂ'Hot/h‘ PA,PB> (D.1)

can be factorized as the product of the two factors, K; = K/ AKP, the first term
describing a free particle,

—in ma 3/2 imA rpA—p 2
KtA(rA§pA):6 K (m) exp (2—}1% (D.2)

and the second one a particle in a 3D harmonic oscillator,
mpw 3/2
KB(rn: — b(t)e—im3/4
t (rBapB) (b( )6 27TFL| sin(wt)|

~ 2 2
tmpw | g+ P TB'PB
— D.
P ( h [Qtan(wt) sin(wt) ]) (D-3)

where ¢(t) = exp(inn/2) for nm < wt < (n+ 1)7. With the boundary condition
K; =0for t < 0, Gg is obtained as the Fourier transform of K,

Gp = *% / dt /PO, (D.4)
0

For simplicity, we introduce dimensionless variables by expressing quantities
in harmonic oscillator units and, even though the derivation has been carried
out for a generic mass ratio, restrict ourselves here to the special case my =
mp =m.

In order to find the equation satisfied by e, we rewrite Eq. (5.28) as

Y(ra,rp) =1/J0(rAaPB)+g¢reg(R)/dpGE (ra,rB;p,p)

e / dp G (ta,r5: P, ) [Yres(p) — treg(R)  (D.5)

and let the two particles approach each other. We introduce here the center-of-
mass and relative coordinates R = (r4 +rp)/2 and r =r4 — rp. Let us turn
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our attention to the first integral appearing in Eq. (D.5):

U= /dpGE(R+ R— ,p,p). (D.6)

Performing the Gaussian integration over p [87] one finds

in3/4  poo T\ i Bt+W)
U= 67/ at —2e , (D.7)
(2m)*/? | sin(t) + t cos(t)[3/2
where ) ,
R+L?> |R-%" 1|R+f R-Z
W= — = . D.
2% T 2tan(t) x| 2t 2sin(t) (D-8)

We have here introduced the shorthand notation x(t) = [1/t + 1/ tan(t)]/2 and
the phase factor ¢(¢), which equals exp(inmn/2) for ¢, <t < t,+1, where tg =0
and t; = 2.029, to = 4.913, ... are the consecutive solutions of z(¢) = 0. The
latter expression, Eq. (D.7), diverges as 1/r for » — 0 in the neighborhood of

t=0:

(2m)3/? /5 eir? /4t /°°

——F—U= dt ——= dt ...
eim3/4 (2t>3/2 + s

- (- )
\/71”/4 /dt< 3/2 > (D.9)

gz/Jreg(R)/dpGE (R+ R- 7p, ) =0 (R) (gFl(R) -~ %) +?]§1i0)

We finally find

that separates out the expected 1/r divergent contribution and defines

eim3/4 8] 7 cH(Et+Wo) 1
AR = 2 / dt< 1) (2t)3/2> (D.11)

(2m)>/? | sin(t) + t cos(t)[3/2

with Wy = R?(cos(t) — tsin(t)/2 — 1)/ (sin(t) + tcos(t)). The term (2t)=3/2
regularizes F in the neighborhood of ¢t = 0, and we have taken the limit 6 — 0.

Let us now consider the remaining term appearing in Eq. (D.5): whenr — 0
and u = R—p — 0, the Green’s function G diverges as |[u| =, or equivalently as

(Ira —pal®>+1|r5 — pB|2)72, but the second integral in Eq. (D.5) is convergent
inu~0:

[ oG (R 5. R = 5:.p) Wics(p) — tres(R)
r—»O,ZUHO/d_U- [u Mreg

|u|4 ou

+0 (|u|2)} (D.12)
u=0

(the first order term vanishes due to spherical symmetry). In this term therefore
no divergence arises and we may set r = 0. The angular integrations can be
performed analytically and we obtain:
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/ dp G (R, R; p, p) [reg (p) — Yreg(R))

1 [~ - b -
"R /0 dp [Wg(ﬂ) — g¥reg(R)| F2(R,p)  (D.13)

with

o t)ellBtH(R*+0%)a] gin (29 R
Fy(R, p) = / it 20 — ( yp ) (D.14)
0 (t]sin(t)[) (2m)"y
which is symmetric under the exchange of p and R. We have here introduced the
radial wave function ¢(R) = Ry (R) and the function y(t) = [1/t 4+ 1/ sin(¢)]/2.
Writing
r—0 a
’l/) (I‘A,I'B) = 1/}reg(R) (1 - ;) + 0(1)7 (D15)

we can cancel the divergent contribution on both sides of Eq. (D.5), and the
remaining terms constitute the implicit integral equation

~ ~ ~ ~ p ~
wreg (R) = 1/}0 (Rv R) + gFl (R)"/)reg(R) + g/dp F2 (R, P) [wreg (P) - Ei/}reg (R)}
(D.16)
that needs to be solved numerically in order to determine %).s. The latter
equation can be written in a symbolic, more compact form as

I ~

wreg =

where O is a symmetric integral operator, which is real in the limit & — 0 [88].
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