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Aside: Vortex matter in 2D
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Work with Tyler Neely and UQ BEC experimental team : Talk at Sant Feliu

G. Gauthier, M. T. Reeves, et al., Science 364, 1264 (2019).
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Chiral vortex matter
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Turbulent Relaxation to Equilibrium in a Two-Dimensional Quantum Vortex Gas,
M. T. Reeves, K. Goddard-Lee, G. Gauthier, O. R. Stockdale, H. Salman, T. 
Edmonds, X. Yu, A. S. Bradley, M. Baker, H. Rubinsztein-Dunlop, M. J. Davis, T. W. 
Neely, Phys. Rev. X 12, 011031 (2022).
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Phase diagram of chiral vortex matter
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Turbulent Relaxation to Equilibrium in a Two-Dimensional Quantum Vortex Gas,
M. T. Reeves, K. Goddard-Lee, G. Gauthier, O. R. Stockdale, H. Salman, T. 
Edmonds, X. Yu, A. S. Bradley, M. Baker, H. Rubinsztein-Dunlop, M. J. Davis, T. 
W. Neely, Phys. Rev. X 12, 011031 (2022).

Create vortices by stirring, allow to relax:



1. Melting of a vortex lattice
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Create perfect lattice in homogeneous BEC, allow to heat up:
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2. Kelvin-Helmholtz-like instability
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Stir in a 
persistent current

Expansion ->
spiral interference

Merging condensates ->
Shear layer of vortices

T. Neely poster
Also G. Roati



Back to the advertised schedule:

Nonequilibrium Transport in a 
Superfluid Josephson Junction 
Chain
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Matt Reeves Sam Begg

S. E. Begg, M. T. Reeves and M. J. Davis, arXiv2307.14590



Cigar-shaped BEC in a 1D optical lattice
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Cigar-shaped BEC

1D optical lattice

Superfluid Josephson 
junction chain

Tunnel coupled 
BECs

Each pancake has 
several hundred 
atoms

Lots and lots of 
experiments…



Ott group

Novel feature: focused electron beam

Allows for 
• high resolution imaging
• controllable, localized dissipation
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T. Gericke et al., Nature Physics 4, 949 (2008)

Stack of BECs in 1D optical lattice

Column densities: theory v expt

Lattice height = 10 recoils
 

 



Can also generate nonequilibrium states
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1D optical lattice:
T. Gericke et al., 
Nature Physics 4, 949 
(2008)

2D optical lattice:
P. Würtz et al., Phys. Rev. 
Lett. 103, 080404 (2009)



How does a single site refill?

Remove atoms from one site.  
Observe refilling dynamics as a function of tunnelling J.
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Experimental system.—We realize this model with a
Bose-Einstein condensate of 45 × 103 87Rb atoms in a one-
dimensional optical lattice with 547 nm lattice spacing.
The trap-frequencies in a lattice site are νρ ¼ 165 Hz and
νz ¼ 40–100 kHz. Each site contains a two-dimensional
Bose-Einstein condensate [17] withN0 ≈ 700 atoms and all
atoms reside in the lowest Bloch band. Employing a
scanning electron microscopy technique [18,19], we ini-
tially remove atoms from one site at the center in a deep
lattice where tunneling is absent [the fraction of remaining
atoms is about 5%–10%], thus, creating an imbalance in
chemical potential Δμ [Fig. 2(a)]. Lowering the lattice
height to different final values, we induce the transport in
the array. After variable evolution times, we probe the atom
number and the transverse density distribution in the central
site using the same electron microscopy technique. Even
though the central site is connected to two reservoir sites,
collisional decoherence ensures that the experimental
system is equivalent to the scheme depicted in Fig. 1.
Figure 2(b) shows the microscopic level structure of

the tunneling junction. The chemical potential of the 2D
condensate in a full site is much larger than the level spacing
in the radial direction and many spatial modes contribute
to the transport. In order to obey energy conservation, the
particles can only tunnel into radially excited states of

the central site. This goes along with a projection of the
radial wave function of the full site onto the available one
in the empty site, corresponding to a Franck-Condon factor
in the tunneling matrix element. We determine this factor
by measuring the radial density distribution of a full site,
extracting the modulus of the radial mean-field wave
function, jψ1ðρÞj ¼

ffiffiffiffiffiffiffiffiffi
nðρÞ

p
, and calculating the overlap

η ¼ jhψ1jψ2ij. Here, ψ2ðρÞ is chosen to be the nearest
available orbital state of a 2D harmonic oscillator in the
central site that leads to resonant tunneling. This results in an
effective tunneling coupling JeffðΔμÞ that depends on the
difference in chemical potential between the reservoir and
the central site. With increasing Δμ, the Franck-Condon
factor and, thus, the effective tunneling coupling get smaller.
For largeΔμ, corresponding to an almost empty central site,
Jeff is reduced by a factor of 10 with respect to the tunneling
coupling J between two full sites, which can be calculated
following [20].
Experimental results.—Figure 3(a) shows the experi-

mental results for different values of J. In all cases, the

(a)

(b)

FIG. 2 (color online). (a) Experimental setup: Two blue detuned
laser beams ð~kLÞ create a one-dimensional optical lattice in which
we load a Bose-Einstein condensate. Removing atoms from the
central site of this system leads to an out-of-equilibrium state as
an implementation of Fig. 1 (see text). (b) Sketch of the energy
level structure (not to scale). Particles of a full site with chemical
potential μ1 are resonant with higher radial states of the empty site
(indicated as dotted lines) in which they tunnel with a reduced
effective tunneling rate Jeff . Subsequently, the atoms thermalize
by collisional decoherence in the initially empty well.

(a)

(b) (c)

FIG. 3 (color online). Experimental results. (a) Refilling
dynamics for three different tunneling couplings. The solid lines
are the prediction of our effective model [see Eq. (3) below].
(b) Negative differential conductivity. The experimental points
are extracted from the data set with J=ℏ ¼ 100 s−1. After a linear
initial rise (red line), the current drops for an increasing
imbalance in chemical potential. The dashed line indicates the
critical current at which NDC sets in. (c) Critical current for
NDC versus coupling strength. Evaluating the critical current
for different tunneling couplings J, we find a power law Jα,
with α ¼ 1.8ð2Þ.

PRL 115, 050601 (2015) P HY S I CA L R EV I EW LE T T ER S week ending
31 JULY 2015

050601-2

R. Labouvie et al. Phys. Rev. Lett. 115, 050601 (2015).

Solid lines: 1D Bose-Hubbard model 
with decoherence

⌫radial = 165Hz

⌫z = 40 – 100 kHz

J/~ = 30 – 370 s
�1



Interpretation: Negative differential conductance

Experiment found characteristic S-shaped refilling curves

Calculate current as a function of difference in chemical potential. 

Conductance:
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Experimental system.—We realize this model with a
Bose-Einstein condensate of 45 × 103 87Rb atoms in a one-
dimensional optical lattice with 547 nm lattice spacing.
The trap-frequencies in a lattice site are νρ ¼ 165 Hz and
νz ¼ 40–100 kHz. Each site contains a two-dimensional
Bose-Einstein condensate [17] withN0 ≈ 700 atoms and all
atoms reside in the lowest Bloch band. Employing a
scanning electron microscopy technique [18,19], we ini-
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lattice where tunneling is absent [the fraction of remaining
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the array. After variable evolution times, we probe the atom
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system is equivalent to the scheme depicted in Fig. 1.
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, and calculating the overlap
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available orbital state of a 2D harmonic oscillator in the
central site that leads to resonant tunneling. This results in an
effective tunneling coupling JeffðΔμÞ that depends on the
difference in chemical potential between the reservoir and
the central site. With increasing Δμ, the Franck-Condon
factor and, thus, the effective tunneling coupling get smaller.
For largeΔμ, corresponding to an almost empty central site,
Jeff is reduced by a factor of 10 with respect to the tunneling
coupling J between two full sites, which can be calculated
following [20].
Experimental results.—Figure 3(a) shows the experi-

mental results for different values of J. In all cases, the
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laser beams ð~kLÞ create a one-dimensional optical lattice in which
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central site of this system leads to an out-of-equilibrium state as
an implementation of Fig. 1 (see text). (b) Sketch of the energy
level structure (not to scale). Particles of a full site with chemical
potential μ1 are resonant with higher radial states of the empty site
(indicated as dotted lines) in which they tunnel with a reduced
effective tunneling rate Jeff . Subsequently, the atoms thermalize
by collisional decoherence in the initially empty well.
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FIG. 3 (color online). Experimental results. (a) Refilling
dynamics for three different tunneling couplings. The solid lines
are the prediction of our effective model [see Eq. (3) below].
(b) Negative differential conductivity. The experimental points
are extracted from the data set with J=ℏ ¼ 100 s−1. After a linear
initial rise (red line), the current drops for an increasing
imbalance in chemical potential. The dashed line indicates the
critical current at which NDC sets in. (c) Critical current for
NDC versus coupling strength. Evaluating the critical current
for different tunneling couplings J, we find a power law Jα,
with α ¼ 1.8ð2Þ.
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R. Labouvie et al. Phys. Rev. Lett. 115, 050601 (2015).

Ohm’s law NDC
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Previous modelling

Few mode Bose-Hubbard
– System would be self-trapped 

under unitary dynamics

– Decoherence – attributed to 
collisions – leads to filling.

Variational truncated Wigner
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D. Fischer and S. Wimberger: Models for a multimode bosonic tunneling junction

Figure 1 Our model consisting of four modes, two of which repre-
sent the ground 1 and excited state 2 of the central well. The atoms
tunnel from the modes 0 and 3 into the initially depleted middle
well, coupling to both the ground and the excited mode, respec-
tively. This coupling is e!ectively decreased by the di!erence in
chemical potential for the ground state and by the reduction fac-
tor η < 1 for the excited state. While our models I and II assume
just phase noise in the wells (not shown), model III assumes an
incoherent coupling between the ground and excited state in the
central well by corresponding relaxation and excitation processes
sketched by the wiggly lines.

−1
2

∑

j=0,3

Jtop(a†
ja2 + a†

2aj ) (1)

where nj = a†
jaj is the number operator, and a†

j , aj are
the creation and annihilation operators for the j-th site
of the periodic lattice, obeying the bosonic commutation
relation [aj , a†

i ] = δi j . We set ! = 1, measuring all energies
in frequency units. In what follows, we will use ε0,1,3 = 0
and only ε2 will be positive in order to model a higher ly-
ing mode in the middle well. We also set J = 1, such that
energies are expressed in units of J and times in units
of J −1. The hopping matrix element to the excited state
is reduced to Jtop = η J = η in order to model a smaller
coupling to the upper mode. This corresponds to the ex-
perimental situation reported in Ref. [8], where 0 < η < 1
would be the Frank-Condon factor which slightly sup-
pressed the coupling to excited modes.

We assume the relaxation time of the bath – which
may be a thermal gas cloud surrounding the conden-
sate – to be much smaller than the typical timescale
of our system τS. Additionally to this so called Markov-
condition, we use the Born approximation and consider
only weak interactions with the bath, such that the den-
sity matrix of the bath and the system separate. The
physical condition to be verified for the latter is:

τS ∼ (N J )−1 = 1
20

J −1 # τR, (2)

where the relaxation times τR are of the order of J −1,
please see below, that justifies the approximation.

The full quantum evolution is then described by the
following master equation in Lindblad form [12, 13]

%̇ = − i
!

[H , %] + L [%] (3)

with incoherent parts

L [%] =
∑

j

γ j

(
A j%A†

j − 1
2

A†
j A j% − 1

2
%A†

j A j

)
. (4)

The A j are the Lindblad operators and represent noise
and relaxation processes specified below. The γ j give the
rates, at which those processes occur.

2 Numerical unraveling of the master equation
by quantum jump method

Unfortunately, for more than two modes neither the co-
herent dynamics induced by the Hamiltonian (1) nor the
master equation (3) can be solved analytically in general.
Our method of choice to evolve the master equation in
time is by calculating many individual quantum trajecto-
ries independently and then approximate the desired ex-
pectation values of observables Ô by averaging over the
realizations |ψ (i)(t)〉 [12–14].

〈Ô〉(t) = Tr
(

Ô%(t)
)

= lim
R→∞

1
R

R∑

i=1

〈
ψ (i)(t)

∣∣Ô
∣∣ψ (i)(t)

〉
(5)

We can estimate the statistical error resulting from the fi-
nite number of realizations R by calculating the standard
deviation from the average. Taking this into account, we
are able to choose R accordingly to the desired precision

σ 2(R, t) = 1
R(R − 1)

R∑

i=1

(
Ô(i)(t) − O(t)

)2 ∼ 1
R

. (6)

In all our applications the propagation of
∣∣ψ (i)

〉
will be

a peace-wise deterministic process, where the develop-
ment of the state vector is caused by an effective non-
hermitian Hamiltonian

Heff = H − i
2

∑

j

γ j A j A†
j , (7)

interrupted by sudden quantum jumps – induced by the
projection with the related Lindblad operator

∣∣ψ ′〉 = A j |ψ〉
‖A j |ψ〉‖
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whenever the decreasing norm of
∣∣ψ (i)

〉
reaches a given

random value χ . The threshold values χ are drawn from
a uniform distribution in [0, 1]. Each time the norm of
the wave function reaches the threshold the new value
is randomly drawn. This artificial reduction of the norm
only serves to determine the exact moment of the next
jump and will be removed afterwards by renormalizing
the state.

In all applications below we keep the system of rea-
sonable size in order to reduce the computational load
over the entire number of trajectories. Hence we restrict
to N = 20 bosons which are initially equally distributed
in the wells 0 and 3. As already mentioned J = 1 is fixed
as well as the other energy scales η = 0.3 and U = 2. The
offset of the excited mode in the central well 2 is chosen
such that it is resonant with the loss of one atom from the
initially filled sites, i.e. ε = U

2 (n(n − 1) − (n − 1)(n − 2)) =
9U for n = N/2 = 10.

We concentrate on showing the fraction of atoms in
the lower mode of the central well, indexed by 1, as com-
pared with the fillings in the sites 0 or 3 which are equal
on average due to the symmetry of our setup. Since all
populations in the modes are time-dependent we look at
the time-dependent ratio f (t) ≡ n1(t)

n0(t) , which we call the
normalized filling in ground mode 1 of the central site.
With this definition a value of f (t) = 1 indicates equal
filling in the three ground modes of the model.

3 Three dynamical models

In the following we will study three dynamical models
which differ in the incoherent processes of the master
equation. The initial state we pick for our time-evolution
is in the self-trapped regime of the Bose-Hubbard model,
meaning that without any kind of incoherent process
no dynamics would occur on experimentally reasonable
timescales. While the first two models I and II assume
pure phase noise either in all or just in the middle well,
model III assumes a biased coupling between the upper
and lower states in the middle well. Whilst, for proper
choices of the Liouville parameters, all of our models ef-
fectively lead to a steady-state saturation of the filling
f (t), they differ in the shape and the time scales of the re-
laxation to the new equilibrium state. We now start with
the discussion of model I.

3.1 Global phase noise

In a first approach we assume that the decoherence is in-
duced by a global noise process, acting on each site with

Figure 2 Global noise, model I: normalized %lling of ground mode
of the central well f (t) for di&erent noise strength: κ = 0.1 (black
circles), 0.025 (blue squares) 0.01 (red diamonds), 0.005 (orange
plusses), 0.001 (green triangles). All curves result from an average
over ∼ 100 trajectories. The solid lines correspond to the %ts ac-
cording to Eq. (10). The symbols in the insets display the %t param-
eter f∞ as a function of the noise amplitude κ . (a) for the setup
sketched in Fig. 1 with two modes in the central well; (b) for just
the ground mode in the central well.

the same rate κ. The corresponding Lindblad operators
are the particle number operators of the sites A j = nj =
A†

j , giving

L [&] = κ

2

3∑

i=0

(2ni&ni − nini& − &nini) . (8)

We may optimize the maximally allowed time step δt
at which the norm of our trajectories ‖ψ (i)‖ is evaluated.
It has to be much smaller than the typical time between
two quantum jumps [14], meaning that

1

k
〈∑3

i=0 n2
j

〉 ≥
nj≤N/2=10

1
200κ

( δt , (9)

in good approximation.
Figure 2 collects our results for the normalized filling

f (t) of the ground state of the middle well for various
values of κ . These curves show a characteristic s-form,
already observed in the original experiment [8], and are
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Multimode c-field model

• Unitary dynamics, no decoherence.
– truncated Wigner approximation: essentially GPE.

• Stack of independent 21 pancake BECs
– Each side starts with random phase + initial quantum noise.

• Delete population of middle pancake.
• Turn on tunnelling
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Truncated Wigner results

0 50 100 150 200

t(!°1
r )

0

0.25

0.5

0.75

1

1.25
N

s/
N

r

J(!r)

CRICOS Provider No 00025B

–– !/ℏ = 370 s!"
–– !/ℏ = 150 s!"
–– !/ℏ = 100 s!"

Looks good.  So what? S. E. Begg, M. T. Reeves and
M. J. Davis, arXiv2307.14590



0 0.5 1
¢N

-0.05

0

0.05

0.1

0.15

I/
N

f
(!

r)

(c)

Mean
Trajectories

Individual trajectories
CRICOS Provider No 00025B

Ohm’s law

~ Potential difference

C
u
rr

e
n
t:Mean

S-shape is only apparent in averaging Negative differential 
conductivity everywhere!?

0

0.5

1

N
0/

N
f

(a)

0 50 100
t(!°1

r )

-0.1

0

0.1

I/
N

f
(!

r)

(b)

Mean

Individual 
trajectories

Instant
current

Smoothed 
current



We think not : system is far from equilibrium.
You can’t define a chemical potential difference ("+−",)
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Also: filling is phase dependent

Filling time is dependent on relative phase of left and right 
chains of pancake BECs
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Extension: continuous dissipation

Bistability and nonequilibrium 
condensation in a driven-
dissipative Josephson array: 
A c-field model
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Driven-dissipative superfluid
Combine 1D optical lattice with continuous dissipation.

Control initial state of single site – full or empty.

Driving: rest of lattice behaves as a reservoir.
Dissipation: controlled loss rate γ from electron beam.
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Non-equilibrium steady-states in a driven-dissipative superfluid

Ralf Labouvie,1, 2 Bodhaditya Santra,1 Simon Heun,1 and Herwig Ott1

1
Department of Physics and Research Center OPTIMAS,

Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
2
Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany

We experimentally study a driven-dissipative Josephson junction array, realized with a weakly
interacting Bose Einstein condensate residing in a one-dimensional optical lattice. Engineered losses
on one site act as a local dissipative process, while tunneling from the neighboring sites constitutes
the driving force. We characterize the emerging steady-states of this atomtronic device. With
increasing dissipation strength � the system crosses from a superfluid state, characterized by a
coherent Josephson current into the lossy site to a resistive state, characterized by an incoherent
hopping transport. For intermediate values of �, the system exhibits bistability, where a superfluid
and a resistive branch coexist. We also study the relaxation dynamics towards the steady-state,
where we find a critical slowing down, indicating the presence of a non-equilibrium phase transition.

PACS numbers: 03.75.Lm, 74.40.Gh, 03.65.Yz, 42.50.Dv

Non-equilibrium steady-states constitute fix points of
the phase space dynamics of classical and quantum sys-
tems [1–3]. They emerge under the presence of a driving
force and lie at the heart of transport phenomena such
as heat conduction [4–6] or current flow [7–9]. They also
naturally appear in open quantum systems [10, 11] and
are connected to the study of non-equilibrium thermody-
namics and non-equilibrium quantum phase transitions
[12]. It has been pointed out that engineering open quan-
tum systems can induce a phase space dynamics which
drives the quantum system in a pure state by solely dis-
sipative means [13–16]. Controlling and understanding
the non-equilibrium steady-states of an open many-body
quantum system therefore o↵ers new routes for quan-
tum state engineering and out-of-equilibrium quantum
dynamics. Here, we investigate the steady-states of a
driven-dissipative Josephson junction array realized with
a Bose-Einstein condensate in a one-dimensional optical
lattice [17]. Varying the strength of the dissipation, the
system can be tuned from superfluid to resistive trans-
port. In between, it exhibits a region of bistability. The
peculiar transport properties make such devices promis-
ing elements for complex atomtronic circuits. At the
same time, they are an interesting candidate to study
generic properties of an open quantum system. Our re-
sults manifest the high potential of open system control
in ultracold quantum gases.

Open quantum systems are characterized by the com-
petition between the intrinsic unitary dynamics, gov-
erned by the Hamilton operator H, and the coupling to
the environment, which induces non-unitary time evolu-
tion and quantum jumps, described by jump operators
(âi, âi

†) which act on the system with rates �i [10]. The
time evolution of the density matrix ⇢ in Markov ap-
proximation is then described by a master equation in
Lindblad form [18]:

E

F

γ

J J J JJ´(N) J´(N)

FIG. 1. Schematics of the experiment. One site of an array of
superfluids is subject to an incoherent local loss process with
rate �. The coherent tunneling coupling between the reservoir
sites is given by J . The coupling to the lossy site is given by
J 0(N) and depends on the filling level (see text).

⇢̇ = L(⇢) = � i

~ [H, ⇢]+
X

i

�i

2

⇣
2âi⇢âi

† � âi
†
âi⇢� ⇢âi

†
âi

⌘
.

(1)
Non-equilibrium steady-states (NESS) are defined by

the condition L(⇢NESS) = 0. The steady-sate can be a
mixed state or a pure state: ⇢NESS = | NESSi h NESS|.
When the jump operators do not a↵ect a pure state, i.e.
âi | NESSi = 0, the state | NESSi is called a dark state.
Steady-states have the peculiar property that they can be
attractor states of the phase space dynamics. Controlling
an open quantum system can therefore be a robust way
to prepare well-designed quantum states.
In the experiment, we study a weakly-interacting, su-

perfluid Bose-Einstein condensate of rubidium atoms in a
one-dimensional periodic potential with high occupancy
per site [17, 19]. Each site contains a small condensate
(N0 ⇡ 700 atoms in the center of the trap) and all of
them are connected via the tunneling coupling J , which
is controlled by the height of the optical lattice. Em-
ploying a scanning electron microscopy technique [20],
we introduce a well-defined local particle loss as a dissi-
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Experiment results
Prepare system:
Full (blue) or empty (red).

Turn on dissipation, allow to 
reach steady state.

Steady state depends on the 
initial condition.

coupling J, which is controlled by the height of the optical
lattice. Employing a scanning electron microscopy tech-
nique [22], we introduce a well-defined local particle loss
as a dissipative process in a single site of the system. To set
the dissipation strength γ, we adjust the effective intensity
of the electron beam [19]. The corresponding jump
operator is then given by the bosonic annihilation operator
âm (the index m denotes the affected site), acting on all
spatial modes of the lossy site with the same dissipation rate
γ. A fraction of the lost atoms is ionized by the electron
beam and serves as a continuous probe of the occupation
of the lossy site. The drive is provided by the large number
of full sites left and right. The overall atom loss during a
measurement is about 10%, such that we can consider these
sites as a superfluid reservoir. Figure 1 shows a sketch of
the experimental scenario. Related systems based on
dissipative Bose-Hubbard models have been studied theo-
retically in Refs. [23–26].
At the beginning of each experimental sequence, we

initialize different starting conditions by optionally empty-
ing the lossy site. Upon continuous dissipation, a steady
state is established on a time scale of several tens of
milliseconds and the losses are balanced by the refilling
dynamics. At the end of the experimental sequence we
freeze out and probe the final density distribution in a deep
lattice. Figure 2(a) shows the resulting filling level of the
lossy site in the steady state in dependence of the
dissipation rate γ. The two data sets correspond to an
initially full site (blue points) and empty site (red points).
For small values of γ, both initial conditions lead to a
completely full site in the steady state. For large dissipation,
the lossy site is almost empty in both cases. The most
prominent feature appears in between: the appearance of
bistability. Starting from an empty site leads to a different
filling level in the steady state compared to starting from a
full site. The inset in Fig. 2(a) shows the two different
trajectories, clearly displaying the two coexisting steady
states. As will be explained in detail below, we refer to the
steady states with unity filling as the superfluid branch (SF)
and with finite population difference as the lower
branch (LB).
To analyze the properties of the steady states we evaluate

the current of atoms into the lossy site. The temporal
evolution of the atom number in that site is given by

_NðtÞ ¼ −γNðtÞ þ IðtÞ; ð2Þ

where NðtÞ is the number of atoms in the lossy site and IðtÞ
is the current from the reservoir sites. The steady state has
to fulfil _N ¼ 0, such that the steady-state current is given by
IS ¼ γNS, where the subscript denotes the steady-state
value. This allows us to convert the filling level shown in
Fig. 2(a) into the current plot shown in Fig. 2(b).
Converting the atom number difference in chemical

potential difference [27], we can also extract the current-
voltage characteristics for the steady states [Fig. 2(c)].
We now discuss the nature of the different steady states

that we observe. For small dissipation, when the filling is
always equal to 1, the current into the lossy site is
exactly linear to the applied dissipation [Fig. 2(b)]. This
is remarkable, as the dissipation is externally applied
and it is not a priori obvious that the current response
induced by the dissipation exactly balances the losses.
Because there is no difference in atom number between
the sites in this regime, the current cannot be driven by a
difference in chemical potential. Instead, it can only be
driven by a phase gradient between the sites, thus
constituting a supercurrent. This is also visible in the
current-voltage characteristics for the steady states
[Fig. 2(c)], which show the characteristic behavior

FIG. 2. (a) Steady-state filling level of the lossy site in
dependence of the dissipation strength γ for an initially full
(blue circles) and empty (red squares) site. The tunneling
coupling between the sites is J=ℏ ¼ 230 s−1. The hatched area
indicates the region of bistability (the transparent, solid lines are a
guide to the eye). The dashed and dash-dotted black lines are
results of theoretical models as discussed in the main text. γLB,
γCSD, and γSF denote critical values of the dissipation, obtained
from the data, and are also explained in the main text. Inset:
dynamical evolution of the system into the steady state within the
bistable region for both initial conditions. (b) Steady-state current
into the lossy site in dependence of γ. (c) For small values of Δμ,
the current-voltage characteristics display the typical behavior of
a superconductor.
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of a superconductor: a finite current in the absence of an
applied voltage.
The appearance of a supercurrent can be directly under-

stood from an effective Josephson model

iℏ
∂ψn

∂t ¼−Jðψn−1þψnþ1ÞþUjψnj2ψnþ i
γ
2
ψnδnm; ð3Þ

where J is the tunneling coupling, U is the on-site
interaction, and m denotes the lossy site. In this mean-
field version of the problem, the losses are implemented as
an imaginary potential [28]. This model indeed supports a
steady-state solution with unity filling at each site and a
phase difference of sinðΔΦÞ ¼ ℏγ=ð4JÞ between all adja-
cent sites [shown as the dashed black line in Fig. 2(a)]. The
observed supercurrent is therefore a steady state under the
combined action of the unitary dynamics and external
dissipation. The theoretical model predicts that the steady
state is a pure state, corresponding to a Bloch state with
finite quasimomentum q. For small values of γ, the system
reaches a superfluid steady state irrespective of the initial
condition. These steady states are therefore attractor states
of the phase space dynamics and their generation is an
example for dissipative quantum state engineering. A
related situation has been theoretically studied for a three
well system in Ref. [29]. There it was found that the
interplay between dissipation and interaction leads to a
well-defined relative phase between the three wells.
The Josephson model predicts a maximum possible

supercurrent of Icrit ¼ 4NJ=ℏ. In our experiment, we only
reach about 25% of this value. This indicates that the
validity of the Josephson model breaks down above a
critical dissipation strength [denoted by γSF in Fig. 2(a)].
Indeed, this does not come as a surprise, as the full
microscopic model of our experiment goes beyond the
validity of Eq. (3). During the dynamics, each site can
support transverse excitations and phase fluctuations, thus
rendering the supercurrent unstable. For a dissipation
strength below the critical value γSF, however, a clear
supercurrent can be observed, in analogy to an electric
supercurrent in a voltage biased Josephson junction [30].
We therefore refer to this class of steady states as the
superfluid branch.
For a dissipation strength exceeding γSF, all steady states

are characterized by a strongly reduced population in the
lossy site, corresponding to a finite voltage drop. The
coherence to the neighboring site is destroyed and
the transport of particles is realized by incoherent hopping
processes. As the tunneling coupling reduces with increas-
ing population imbalance (see below), this regime exhibits
negative differential conductivity, as observed previously
[27]. Because of the absence of superfluidity, this regime
can be modeled with an effective single particle model,
including local phase noise due to collisions, losses, and a
filling dependent effective tunneling coupling [19]. The
result is shown in Fig. 2(a) as dash-dotted black line. For

better comparison with the experiment, we plot the solution
of the model for the whole range of γ. Note that this model
does not include the interaction between the atoms and
therefore does not support superfluid transport. For
γ > γSF, the phase noise and the dissipation rates com-
pletely dominate the dynamics and we refer to this class of
steady states as normal.
The bistable region (γLB < γ < γSF) supports superfluid

steady states and steady states with finite population
difference. Bistability occurs in various physical systems,
e.g., optics [31] and electronic tunneling devices [32], and
requires an intrinsic nonlinearity in the system. In our
experiment, the nonlinearity has its origin in the interaction
energy between the atoms, which leads to a filling
dependent on-site energy. Different filling therefore corre-
sponds to a difference in chemical potential. Atoms
tunneling into the lossy site are therefore either off-
resonantly coupled to a condensate with reduced atom
number (provided a condensate fraction exists at all) or can
tunnel resonantly into radially excited states. In this case,
however, an additional Franck-Condon factor comes into
play that leads to a reduced tunneling coupling J0ðNÞ < J.
The availability of these single particle states in the central
sites prevents the system from self-trapping [27]. Both
effects suppress the transport of particles in the central site,
thus giving rise to bistability.
The precise microscopic modeling of the bistability

region is challenging. We first note that the scaling of
γLB with J follows a power law with an exponent of 1.7(2)
[Fig. 3(a)]. This quadratic dependence suggests that the
steady states in the LB have an incoherent component and
the transport can no longer be provided by a supercurrent
alone. Moreover, the LB connects to the normal regime,
where the transport is completely incoherent. Therefore, a

FIG. 3. (a) Critical dissipation rate γLB in dependence of the
tunneling rate. We find a power law dependence with an exponent
1.7(2). This corresponds to a transition from a coherent to an
incoherent process at which the internal rates become propor-
tional to J2. (b) Time τ in which the steady state is reached for
different dissipation rates at J=ℏ ¼ 290 s−1. Within the bistable
region τ is increasing, which is known as critical slowing down.
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coupling J, which is controlled by the height of the optical
lattice. Employing a scanning electron microscopy tech-
nique [22], we introduce a well-defined local particle loss
as a dissipative process in a single site of the system. To set
the dissipation strength γ, we adjust the effective intensity
of the electron beam [19]. The corresponding jump
operator is then given by the bosonic annihilation operator
âm (the index m denotes the affected site), acting on all
spatial modes of the lossy site with the same dissipation rate
γ. A fraction of the lost atoms is ionized by the electron
beam and serves as a continuous probe of the occupation
of the lossy site. The drive is provided by the large number
of full sites left and right. The overall atom loss during a
measurement is about 10%, such that we can consider these
sites as a superfluid reservoir. Figure 1 shows a sketch of
the experimental scenario. Related systems based on
dissipative Bose-Hubbard models have been studied theo-
retically in Refs. [23–26].
At the beginning of each experimental sequence, we

initialize different starting conditions by optionally empty-
ing the lossy site. Upon continuous dissipation, a steady
state is established on a time scale of several tens of
milliseconds and the losses are balanced by the refilling
dynamics. At the end of the experimental sequence we
freeze out and probe the final density distribution in a deep
lattice. Figure 2(a) shows the resulting filling level of the
lossy site in the steady state in dependence of the
dissipation rate γ. The two data sets correspond to an
initially full site (blue points) and empty site (red points).
For small values of γ, both initial conditions lead to a
completely full site in the steady state. For large dissipation,
the lossy site is almost empty in both cases. The most
prominent feature appears in between: the appearance of
bistability. Starting from an empty site leads to a different
filling level in the steady state compared to starting from a
full site. The inset in Fig. 2(a) shows the two different
trajectories, clearly displaying the two coexisting steady
states. As will be explained in detail below, we refer to the
steady states with unity filling as the superfluid branch (SF)
and with finite population difference as the lower
branch (LB).
To analyze the properties of the steady states we evaluate

the current of atoms into the lossy site. The temporal
evolution of the atom number in that site is given by

_NðtÞ ¼ −γNðtÞ þ IðtÞ; ð2Þ

where NðtÞ is the number of atoms in the lossy site and IðtÞ
is the current from the reservoir sites. The steady state has
to fulfil _N ¼ 0, such that the steady-state current is given by
IS ¼ γNS, where the subscript denotes the steady-state
value. This allows us to convert the filling level shown in
Fig. 2(a) into the current plot shown in Fig. 2(b).
Converting the atom number difference in chemical

potential difference [27], we can also extract the current-
voltage characteristics for the steady states [Fig. 2(c)].
We now discuss the nature of the different steady states

that we observe. For small dissipation, when the filling is
always equal to 1, the current into the lossy site is
exactly linear to the applied dissipation [Fig. 2(b)]. This
is remarkable, as the dissipation is externally applied
and it is not a priori obvious that the current response
induced by the dissipation exactly balances the losses.
Because there is no difference in atom number between
the sites in this regime, the current cannot be driven by a
difference in chemical potential. Instead, it can only be
driven by a phase gradient between the sites, thus
constituting a supercurrent. This is also visible in the
current-voltage characteristics for the steady states
[Fig. 2(c)], which show the characteristic behavior

FIG. 2. (a) Steady-state filling level of the lossy site in
dependence of the dissipation strength γ for an initially full
(blue circles) and empty (red squares) site. The tunneling
coupling between the sites is J=ℏ ¼ 230 s−1. The hatched area
indicates the region of bistability (the transparent, solid lines are a
guide to the eye). The dashed and dash-dotted black lines are
results of theoretical models as discussed in the main text. γLB,
γCSD, and γSF denote critical values of the dissipation, obtained
from the data, and are also explained in the main text. Inset:
dynamical evolution of the system into the steady state within the
bistable region for both initial conditions. (b) Steady-state current
into the lossy site in dependence of γ. (c) For small values of Δμ,
the current-voltage characteristics display the typical behavior of
a superconductor.
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of a superconductor: a finite current in the absence of an
applied voltage.
The appearance of a supercurrent can be directly under-

stood from an effective Josephson model

iℏ
∂ψn

∂t ¼−Jðψn−1þψnþ1ÞþUjψnj2ψnþ i
γ
2
ψnδnm; ð3Þ

where J is the tunneling coupling, U is the on-site
interaction, and m denotes the lossy site. In this mean-
field version of the problem, the losses are implemented as
an imaginary potential [28]. This model indeed supports a
steady-state solution with unity filling at each site and a
phase difference of sinðΔΦÞ ¼ ℏγ=ð4JÞ between all adja-
cent sites [shown as the dashed black line in Fig. 2(a)]. The
observed supercurrent is therefore a steady state under the
combined action of the unitary dynamics and external
dissipation. The theoretical model predicts that the steady
state is a pure state, corresponding to a Bloch state with
finite quasimomentum q. For small values of γ, the system
reaches a superfluid steady state irrespective of the initial
condition. These steady states are therefore attractor states
of the phase space dynamics and their generation is an
example for dissipative quantum state engineering. A
related situation has been theoretically studied for a three
well system in Ref. [29]. There it was found that the
interplay between dissipation and interaction leads to a
well-defined relative phase between the three wells.
The Josephson model predicts a maximum possible

supercurrent of Icrit ¼ 4NJ=ℏ. In our experiment, we only
reach about 25% of this value. This indicates that the
validity of the Josephson model breaks down above a
critical dissipation strength [denoted by γSF in Fig. 2(a)].
Indeed, this does not come as a surprise, as the full
microscopic model of our experiment goes beyond the
validity of Eq. (3). During the dynamics, each site can
support transverse excitations and phase fluctuations, thus
rendering the supercurrent unstable. For a dissipation
strength below the critical value γSF, however, a clear
supercurrent can be observed, in analogy to an electric
supercurrent in a voltage biased Josephson junction [30].
We therefore refer to this class of steady states as the
superfluid branch.
For a dissipation strength exceeding γSF, all steady states

are characterized by a strongly reduced population in the
lossy site, corresponding to a finite voltage drop. The
coherence to the neighboring site is destroyed and
the transport of particles is realized by incoherent hopping
processes. As the tunneling coupling reduces with increas-
ing population imbalance (see below), this regime exhibits
negative differential conductivity, as observed previously
[27]. Because of the absence of superfluidity, this regime
can be modeled with an effective single particle model,
including local phase noise due to collisions, losses, and a
filling dependent effective tunneling coupling [19]. The
result is shown in Fig. 2(a) as dash-dotted black line. For

better comparison with the experiment, we plot the solution
of the model for the whole range of γ. Note that this model
does not include the interaction between the atoms and
therefore does not support superfluid transport. For
γ > γSF, the phase noise and the dissipation rates com-
pletely dominate the dynamics and we refer to this class of
steady states as normal.
The bistable region (γLB < γ < γSF) supports superfluid

steady states and steady states with finite population
difference. Bistability occurs in various physical systems,
e.g., optics [31] and electronic tunneling devices [32], and
requires an intrinsic nonlinearity in the system. In our
experiment, the nonlinearity has its origin in the interaction
energy between the atoms, which leads to a filling
dependent on-site energy. Different filling therefore corre-
sponds to a difference in chemical potential. Atoms
tunneling into the lossy site are therefore either off-
resonantly coupled to a condensate with reduced atom
number (provided a condensate fraction exists at all) or can
tunnel resonantly into radially excited states. In this case,
however, an additional Franck-Condon factor comes into
play that leads to a reduced tunneling coupling J0ðNÞ < J.
The availability of these single particle states in the central
sites prevents the system from self-trapping [27]. Both
effects suppress the transport of particles in the central site,
thus giving rise to bistability.
The precise microscopic modeling of the bistability

region is challenging. We first note that the scaling of
γLB with J follows a power law with an exponent of 1.7(2)
[Fig. 3(a)]. This quadratic dependence suggests that the
steady states in the LB have an incoherent component and
the transport can no longer be provided by a supercurrent
alone. Moreover, the LB connects to the normal regime,
where the transport is completely incoherent. Therefore, a

FIG. 3. (a) Critical dissipation rate γLB in dependence of the
tunneling rate. We find a power law dependence with an exponent
1.7(2). This corresponds to a transition from a coherent to an
incoherent process at which the internal rates become propor-
tional to J2. (b) Time τ in which the steady state is reached for
different dissipation rates at J=ℏ ¼ 290 s−1. Within the bistable
region τ is increasing, which is known as critical slowing down.
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• Time scale to reach steady 
state diverges?

• Critical slowing down?
• Nonequilibrium phase 

transition?



c-field model

CRICOS Provider No 00025B

J

�

hdW (x, t)dW ⇤(x0, t0)i = ��(x� x0)�(t� t0)

System field

Tunnelling from reservoir site

Reservoir field

Reservoir chemical potential

Dissipation from electron beam

Interactions

Noise correlations

id S = �J R(x) + [�r2 + V (x)� i�/2� µR + g| S |2] Sdt+ dW

 R(x)

µR

g| S |2

 S

M. T. Reeves and M. J. Davis, 
SciPost Phys. 15, 068 (2023).



Modelling of reservoir
Coherent reservoir model
– Time independent GPE ground 

state.
– No backaction on reservoir.

Dynamical reservoir model
– Stochastic GPE dynamics for 

reservoir.
– Refilled by thermal reservoir.
– Effective temperature -> phase 

diffusion.
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Steady state results
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Conclusions and outlook

c-field model describes experimental results
• Filling of depleted sites.

• Nonequilibrium phase diagram (proviso: with fluctuations 
from temperature of reservoirs).

• Provides several insights to the physics.

Future
• Dynamics in bistable region: !"#$%& "'($)*(+",(-.(/0&1.(23(456563(725228.

• Dark soliton state.
– pi phase difference between sides – 

resistant to filling – metastable.
– Stabilised by dissipation.

• Transport through chains of pancakes.

• Fashioning atomtronic devices by adding junctions and 
controlling local well depth.
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