

Australian Government

Australian Research Council

Nonequilibrium Transport in a Superfluid Josephson Junction Chain

Matt Davis BEC

ARC CENTRE OF EXCELLENCE IN FUTURE LOW-ENERGY ELECTRONICS TECHNOLOGIES

Matthew Davis^{1,2}

Matt Reeves², Sam Begg²

ARC Centres' of Excellence in: ¹Engineered Quantum Systems / ²Future Low-Energy Electronics Technologies, School of Mathematics and Physics, University of Queensland, Australia.

EQUS Australian Research Council Centre of Excellence for Engineered Quantum Systems

THE UNIVERSITY OF QUEENSLAND

Staff

UQ nonequilibrium superfluid theory

- Matthew Davis
- Matt Reeves
- Andrew Groszek
- Lewis Williamson
- Angela White
- Matthew Edmonds
- Emma Laird
- Sam Begg (now Korea)

Students

- John Deng PhD
- Tim Edmonds Hons, PhD
- Abitha Muniraj Saraswathy, PhD
- Charlotte Quirk, Hons -> PhD

Graduated

- Jemima Goodhew, Hons
- Oliver Sandberg Hons, MPhil
- Oliver Stockdale Hons, Mphil
- Tim Harris Hons, MPhil

FLEET ARC CE FUTURE ELECTR

RC CENTRE OF EXCELLENCE IN UTURE LOW-ENERGY LECTRONICS TECHNOLOGIES

FINESS 2024

FInite temperature Non-Equilibrium Superfluid \$ystems

Gold Coast, Queensland, Australia 2 – 6 September 2024.

Organisers: Matthew Davis Meera Parish Tyler Neely Elena Ostrovskaya Kris Helmerson Thomas Volz

Save the date!

Aside: Vortex matter in 2D

0

Work with Tyler Neely and UQ BEC experimental team : Talk at Sant Feliu

Chiral vortex matter

TECHNOLOGIES

LEET

Turbulent Relaxation to Equilibrium in a Two-Dimensional Quantum Vortex Gas, M. T. Reeves, K. Goddard-Lee, G. Gauthier, O. R. Stockdale, H. Salman, T. Edmonds, X. Yu, A. S. Bradley, M. Baker, H. Rubinsztein-Dunlop, M. J. Davis, T. W. Neely, Phys. Rev. X **12**, 011031 (2022).

Phase diagram of chiral vortex matter

Experimental vortex histograms

F

Turbulent Relaxation to Equilibrium in a Two-Dimensional Quantum Vortex Gas, M. T. Reeves, K. Goddard-Lee, G. Gauthier, O. R. Stockdale, H. Salman, T. Edmonds, X. Yu, A. S. Bradley, M. Baker, H. Rubinsztein-Dunlop, M. J. Davis, T. W. Neely, Phys. Rev. X **12**, 011031 (2022).

0.2

forbidden

Angular momentum

0.3

D

Create vortices by stirring, allow to relax:

off-axis

single

double

 \Diamond

0.4

0.15

0.1

0.05

0

0

В

А

Energy

on-axis

PC stir

0.1

near-Ricatt

ΣZ

Gaussian

ARC CENTRE OF EXCELLENCE IN FUTURE LOW-ENERGY ELECTRONICS TECHNOLOGIES

1. Melting of a vortex lattice

_ E E T

Create perfect lattice in homogeneous BEC, allow to heat up:

ARC CENTRE OF EXCELLENCE IN FUTURE LOW-ENERGY ELECTRONICS TECHNOLOGIES

TRONICS TECHNOLOGIES

CRICOS Provider No 00025B

Stir in a persistent current

Expansion -> spiral interference

Merging condensates -> Shear layer of vortices

Shear flow

Kelvin Helmholtz in a cloud layer

LEET

Back to the advertised schedule:

Nonequilibrium Transport in a Superfluid Josephson Junction Chain

Matt Reeves

Sam Begg

TECHNOLOGIES

S. E. Begg, M. T. Reeves and M. J. Davis, arXiv2307.14590

ΕI

F

Cigar-shaped BEC in a 1D optical lattice

ECHNOLOGIES

Ott group

Novel feature: focused electron beam

Allows for

- high resolution imaging
- controllable, localized dissipation

T. Gericke et al., Nature Physics 4, 949 (2008)

Stack of BECs in 1D optical lattice

Can also generate nonequilibrium states

1D optical lattice: T. Gericke *et al.*, Nature Physics **4**, 949 (2008) 2D optical lattice: P. Würtz *et al.*, Phys. Rev. Lett. **103**, 080404 (2009)

LEET

ARC CENTRE OF EXCELLENCE IN FUTURE LOW-ENERGY ELECTRONICS TECHNOLOGIES

How does a single site refill?

Remove atoms from one site.

R. Labouvie et al. Phys. Rev. Lett. **115**, 050601 (2015).

Observe refilling dynamics as a function of tunnelling J.

Interpretation: Negative differential conductance

R. Labouvie et al. Phys. Rev. Lett. 115, 050601 (2015).

CHNOLOGIES

Previous modelling

ECHNOLOGIES

Few mode Bose-Hubbard

- System would be self-trapped under unitary dynamics
- Decoherence attributed to collisions leads to filling.

D. Fischer & S. Wimberger, Annalen Der Physik, **74**, 1600327 (2017).

M. K. Olsen and J. F. Corney, *Phys. Rev. A* **94**, 033605 (2016).

Variational truncated Wigner

C. D. Mink, A. Pelster, J. Benary, H. Ott, M. Fleischhauer, *SciPost Phys.* **12**, 051 (2022).

Multimode c-field model

HNOLOGIES

• Unitary dynamics, **no decoherence**.

S. E. Begg, M. T. Reeves and M. J. Davis, arXiv2307.14590

- truncated Wigner approximation: essentially GPE.
- Stack of independent 21 pancake BECs
 - Each side starts with random phase + initial quantum noise.
- Delete population of middle pancake.
- Turn on tunnelling

Truncated Wigner results

F

Looks good. So what?

S. E. Begg, M. T. Reeves and M. J. Davis, arXiv2307.14590

LENCE IN

TECHNOLOGIES

Individual trajectories

S-shape is only apparent in averaging

Negative differential conductivity everywhere!?

ARC CENTRE OF EXCELLENCE IN FUTURE LOW-ENERGY ELECTRONICS TECHNOLOGIES You can't define a chemical potentia

But – you can if *J* is small enough, and chemical potential difference is ramped slowly enough.

Start with system site shifted in energy so that equilibrium initial occupation is empty.

Ramp shift off at a finite rate.

Expt: ramp rate ~ $2\omega_r^{-1}$

Is this negative differential conductivity?

ECHNOLOGIES

Also: filling is phase dependent

HNOLOGIES

Filling time is dependent on relative phase of left and right chains of pancake BECs

Initially left and right chains have random phase.

For large J: Fill time of system is much smaller when nearest neighbours are initially in phase.

Extension: continuous dissipation

Bistability and nonequilibrium condensation in a drivendissipative Josephson array: A c-field model

Matt Reeves

F

M. T. Reeves and M. J. Davis, SciPost Phys. **15**, 068 (2023).

ARC CENTRE OF EXCELLENCE IN FUTURE LOW-ENERGY ELECTRONICS TECHNOLOGIES

Driven-dissipative superfluid

HNOLOGIES

Combine 1D optical lattice with continuous dissipation.

Control **initial state** of single site – **full** or **empty**.

Driving: rest of lattice behaves as a **reservoir**. **Dissipation**: controlled loss rate γ from electron beam.

F.

EOUS Autralian Research Council Autralian Research Council Cou

Experiment results

Prepare system: Full (blue) or empty (red).

Turn on dissipation, allow to reach steady state.

Steady state depends on the initial condition.

- Time scale to reach steady state diverges?
- Critical slowing down?
- Nonequilibrium phase transition?

HNOLOGIES

R. Labouvie et al., Phys. Rev. Lett. 116, 235302 (2016).

c-field model

M. T. Reeves and M. J. Davis, SciPost Phys. **15**, 068 (2023).

HNOLOGIES

 $id\psi_S = -J\psi_R(\mathbf{x}) + \left[-\nabla^2 + V(\mathbf{x}) - i\gamma/2 - \mu_R + g|\psi_S|^2\right]\psi_S dt + dW$

 ψ_S System field

- J Tunnelling from reservoir site
- $\psi_R(\mathbf{x})$ Reservoir field
 - μ_R Reservoir chemical potential

 γ Dissipation from electron beam $g|\psi_S|^2$ Interactions

$$\langle dW(\mathbf{x},t)dW^*(\mathbf{x}',t')\rangle = \gamma\delta(\mathbf{x}-\mathbf{x}')\delta(t-t')$$

Noise correlations

Modelling of reservoir

TECHNOLOGIES

Coherent reservoir model

- Time independent GPE ground state.
- No backaction on reservoir.

Dynamical reservoir model

- Stochastic GPE dynamics for reservoir.
- Refilled by thermal reservoir.
- Effective temperature -> phase diffusion.

Steady state results

M. T. Reeves and M. J. Davis, SciPost Phys. **15**, 068 (2023).

ARC CENTRE OF EXCELLENCE IN FUTURE LOW-ENERGY ELECTRONICS TECHNOLOGIES

c-field model describes experimental results

- Filling of depleted sites.
- Nonequilibrium phase diagram (proviso: with fluctuations from temperature of reservoirs).
- Provides several insights to the physics.

Conclusions and outlook

Future

• Dynamics in bistable region: Benary et al, New J. Phys. 24 103034 (2022).

Ceulemans and Wouters,

Phys. Rev. A 108, 013314

(2023)

- Dark soliton state.
 - pi phase difference between sides resistant to filling metastable.
 - Stabilised by dissipation.
- Transport through chains of pancakes.
- Fashioning atomtronic devices by adding junctions and controlling local well depth.

CRICOS Provider No 00025B

