Efficient detection of topological features

Pietro Massignan

The Institute of Photonic Sciences

Collaborators

Theory

Maria Maffei

Institut de Ciències **Fotòniques**

000 000 UPC

Alexandre Dauphin

atomic wires

Eric J. Meier

Fangzhao An

PHYSICS ILLINOIS

Bryce Gadway

Hughes Taylor

twisted photons

Alessio D'Errico

Lorenzo Marrucci

Experiments

Filippo Cardano

Maciej Lewenstein

Outline

- Introduction
- One-dimensional chiral models
 - static (SSH)
 - topological Anderson transition (disordered atomic wires)
 - periodically-driven(photonic quantum walk)
- Mean Chiral Displacement (MCD)

Condensed matter

Plenty of emergent phenomena! But we need to *observe* these. E.g., how to "detect topology"?

Topology

Geometry: classification of objects
 under continuous deformations

✓ stretch and bend✗ but don't cut, puncture, or glue

- Genus: # of holes
- Winding of a closed path:
 # of times it encircles a given point, line, ...

Hall effect

- Classical Hall effect (1879): when current flows in a 2D material, in presence of an out-of-plane B field, there appears a transverse (Hall) current
- Quantum Hall effect (1980): at low temperatures and high-B, the Hall current is quantized!

- Laughlin (1982): robustness due to topology
- TKNN (1982): Kubo formula links conductivity to *Chern numbers* (topological invariants defined on the occupied bands).

Thouless, Kohmoto, Nightingale & den Nijs Phys. Rev. Lett. (1982)

Topological insulators

- Insulators in the bulk, presenting robust current-carrying edge states
- Protected by the topology of bulk bands against local perturbations, like *disorder* and *defects*
- Enormous progresses in the last 10 years (QSH, 3D TIs., 4D QH, ...)
- Characterization of non-interacting TIs in terms of <u>discrete symmetries</u>
 T: time-reversal
 C: charge-conjugation
 S: chiral

AI BDI

DIII

AII

CII

С

 Beyond the periodic table: Mott / crystalline / Anderson / Floquet TIs, …

Chiu, Teo, Schnyder & Ryu, Rev. Mod. Phys. (2016)

 \mathbb{Z}_2

 \mathbb{Z}_2

0

 $2\mathbb{Z}$

0

0

 \mathbb{Z}_2^2

 $2\mathbb{Z}$

0

 \mathbb{Z}_2

 \mathbb{Z}_2

 $2\mathbb{Z}$

 \mathbb{Z}_{2}

 \mathbb{Z}_{2}

0

 $2\mathbb{Z}$

0

0

0

 \mathbb{Z}

0

 \mathbb{Z}

 \mathbb{Z}_2

 \mathbb{Z}_2

1D chiral systems

polyacetilene [Nobel prize in Chemistry 2000]

ultracold atoms in superlattices [M. Atala *et al.*, Nature Phys. 2013]

[Zeuner *et al.*, PRL 2015]

Cavity polaritons [St. Jean *et al.*, Nature Phot. 2017]

 $t-\Delta$ $t+\Delta$ $t-\Delta$ $t+\Delta$ $t-\Delta$ $t-\Delta$ $t+\Delta$ $t-\Delta$ $t+\Delta$ $t-\Delta$

ultracold atoms in k-space lattices [Meier *et al.*, Nature Comm. 2016]

SC qubits in mw-cavities [Flurin *et al.*, PRX 2017]

SSH model

Spinless fermions with staggered tunnelings:

Su, Schrieffer & Heeger Phys. Rev. Lett. (1979)

Asbóth, Oroszlány, & Pályi Lecture Notes in Physics (2016)

∃ two sublattices ∃ a "canonical basis" where *H* is purely off-diag: H

$$I = \left(\begin{array}{cc} 0 & h^{\dagger} \\ h & 0 \end{array}\right)$$

- Chiral symmetry: $\Gamma H \Gamma = -H$ (Γ : unitary, Hermitian, local)
- In momentum space: $H_k = E_k \mathbf{n}_k \cdot \boldsymbol{\sigma}$
- In the canonical basis, $\mathbf{n}_k \perp \hat{\mathbf{z}}$ $\forall k$ and $\Gamma = \sigma_z$
- Winding:

The winding W

• $\ensuremath{\mathcal{W}}$ may be calculated:

• from n:
$$\mathcal{W} = \oint \frac{\mathrm{d}k}{2\pi} \left(\mathbf{n} \times \partial_k \mathbf{n}\right)_z$$

• from the *eigenstates*: $W = \oint \frac{\mathrm{d}k}{\pi} S$,

 $H_k = E_k \mathbf{n}_k \cdot \boldsymbol{\sigma}$

$$\mathcal{S} = i \langle \psi_+ | \partial_k \psi_- \rangle$$

skew polarization

What if the Hamiltonian is not known?
 Can one *measure* the winding?

Yes, and it's simple!

Evolution in real time

Initial condition
 localized on the m=0 cell:

• Mean Chiral Displacement: $C(t) \equiv 2\langle \widehat{\Gamma m}(t) \rangle = 2 \left| \langle m_A(t) \rangle - \langle m_B(t) \rangle \right|$

$$\mathcal{C}(t) = 2 \int_{-\pi}^{\pi} \frac{\mathrm{d}k}{2\pi} \left\langle U^{-t} \sigma_z(i\partial_k) U^t \right\rangle_{\psi_0} = 2 \int_{-\pi}^{\pi} \frac{\mathrm{d}k}{2\pi} \sin^2(Et) \left| \mathbf{n} \times \partial_k \mathbf{n} \right| \quad \xrightarrow{t \to \infty} \quad \mathcal{W}$$

$$\mathcal{W} = \oint \frac{\mathrm{d}k}{2\pi} \left(\mathbf{n} \times \partial_k \mathbf{n} \right)_z$$

- Bulk measurement
- Fast convergence

Cardano, D'Errico, Dauphin, Maffei, ... Marrucci, Lewenstein & PM Nature Comm. (2017)

Resistance to disorder

the MCD stays locked to the topological invariant as long as $\Delta{<}\Delta_{\rm gap}$

Higher windings

• Extension to long-ranged models:

 At critical boundaries: MCD converges to the mean of the winding in the neighboring phases

> Maffei, Dauphin, Cardano, Lewenstein & PM New J. Phys. 2018

Topological Anderson insulator

Meier, An, Dauphin, Maffei, PM, Taylor and Gadway, arXiv:1802.02109

Atomic wires

Atomic, ~ideal BEC •

t , $e^{i \varphi_{-1}}$

 $t_1 e^{i\varphi}$

Laser-driven coupling • of discrete-momentum states

$$H_{\text{eff}} \approx \sum_{j} t_j (e^{i\varphi_j} |\tilde{\psi}_{j+1}\rangle \langle \tilde{\psi}_j | + \text{h.c.})$$

- 1D Hubbard model with full control on each • tunneling strength and phase
- Built-in chiral symmetry •

Detecting topology

A topological wire becomes trivial by adding disorder

disorder strength

color map: real-space computation of the winding

red line: critical boundary (diverging localization length)

Topological Anderson transition

A trivial wire is driven into the topological phase by adding disorder

Meier, An, Dauphin, Maffei, PM, Taylor and Gadway, arXiv:1802.02109

Floquet 1D chiral models

photonic quantum walk of *twisted* photons

Discrete-Time Quantum Walk

[Kitagawa, QIP (2012)]

Twisted photons

25th anniversary: Allen et al., PRA (1992)

- Collimated monochromatic beam propagating along $~~\hat{\mathbf{z}}$
- Light has linear momentum $\mathbf{p} \propto \mathbf{E}^* \times \mathbf{B}$ ("push")
- But it can also carry also angular momentum
- In the "paraxial approximation", $\hat{J}_z = \hat{S}_z + \hat{L}_z$
- "Spin" AM: $\hat{S}_z = \hbar \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
- Orbital AM: $\hat{L}_z = -i\hbar(\mathbf{r} \times \nabla)_z$

SAM interaction

circularly polarized light interacts with the particle's spin

OAM interaction

light with OAM rotates a particle around the beam axis

Twisting light

- Helical modes have a phase pattern $e^{im\phi}$
- Their OAM is quantized: $\hbar m$

Franke-Allen & Radwell Optics&Photonics News (2017)

Discrete-Time Quantum Walk with twisted photons

Cascade of Q-plates and quarter-wave plates W

Ŵ		1	(1	-i	
	=	$\overline{2}$		-i	1)

discrete-time QW	Twisted photons	
walker's position	OAM (<i>m</i>)	
coin state (\uparrow/\downarrow)	polarization (C/O)	
spin rotation	W-plate	
conditional displacement	Q-plate	
time	$\hat{\mathbf{z}}$	

[Cardano et al., Science Advances (2015)]

Discrete-Time Quantum Walk

- Periodic evolution: may be treated via Floquet theory
- One-step evolution operator $U \rightarrow H_{eff} \equiv \frac{i}{T} \log U$
- In momentum space: $H_{\text{eff}}(k) = E_k \hat{\mathbf{n}}_k \cdot \boldsymbol{\sigma}$
- The spectrum of H_{eff} is 2π -periodic (quasi-energies E_k)
- T+C+S symmetries: BDI class —> same invariant as the static SSH model

Detecting the invariant

z

• Winding:
$$\mathcal{W} = \oint \frac{\mathrm{d}k}{2\pi} \left(\mathbf{n} \times \partial_k \mathbf{n}\right)$$

 Experimental measurement of the MCD after 7 timesteps of the DTQW with twisted photons:

 (\bullet/\bullet) : different initial polarizations

- Check bulk-boundary correspondence
- Spectrum with edges:

- darker colors: "edgier" states
- Bulk-boundary correspondence violated?

 δ

Timeframes

- Different initial t_0 lead to different U
- Eigenvalues of H_{eff} don't depend on t_0
- Eigenstates instead do! And so does the winding: $\mathcal{W} = \mathcal{W}_1 \neq \mathcal{W}_2$
- Timeframes invariant under time-reflection (U_1 and U_2) are special
- # of 0-energy edge states: $C_0 = (W_1 + W_2)/2$
- # of π -energy edge states: $C_{\pi} = (\mathcal{W}_1 \mathcal{W}_2)/2$

Winding in an alternative timeframe

Measurement of the MCD with protocol U_2 :

(•/•): different initial polarizations

Bulk-boundary correspondence

Conclusions

- The *mean chiral displacement* captures the winding of 1D chiral systems (static, periodically driven, and disordered)
- Detection of MCD is simple, rapid, and robust
- Experimental observation of a topological Anderson transition
- Complete topological characterization of Floquet systems by studying *different timeframes*
- Dynamical observables for *other topological classes*?
- Extension to interacting systems?

Cardano *et al.,* Nature Comm. 2017 Maffei *et al.,* New J. Phys. 2018 Meier *et al.,* arXiv 2018

