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Superfluid vortices
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[Yarmchuk, Gordon and Packard, 1979] [Ketterle’s group @ MIT, 2001]
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Superfluid hydrodynamics
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[A. Fetter, Rev. Mod. Phys. 81, 647 (2009)]

✦ Macroscopic condensate wavefunction:

✦ Superfluid velocity:

✦ Vorticity:                                                 (irrotational)

✦ Quantized circulation:

✦ Current conservation: 

✦ For constant density, the fluid becomes incompressible:

✦ SF (non-viscous) + irrotational + incompressible = perfect fluid
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✦ For 2D incompressible fluids, 
 
and the velocity is parallel to iso-contours of 
                          and orthogonal to iso-contours of 

✦ Perfect fluids in 2D fully described by 

✦     is a meromorphic function of 

✦ Cauchy-Riemann conditions readily imply:

2D potential flow
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✦ A single vortex at the origin:

✦ A vortex dipole: 

Vortices on a plane
F (Z) = log(Z)

F (Z) = log(Z � Z1)� log(Z � Z2) Z1 Z2
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✦ As in electrodynamics, use the method of images

✦ Single vortex on a disk of radius R:

Surface with boundaries

F (Z) = log
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✦ An annulus has two boundaries         infinite series of images needed  

✦ Potential:

Vortex on an annulus
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✦ A vortex moves with  
 the local uniform flow velocity:

✦ Annulus with                 :

Velocity of the vortex core
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✦ Start with the fluid at rest

✦ Stir the fluid from outside at an increasing rate

✦ A vortex appears on the outer edge, 
and moves inward

✦ The fluid (on average) rotates for                 , 
but it remains stationary otherwise

✦ As the vortex crosses the inner edge, 
stop stirring

✦ The fluid is left with exactly     units of angular 
momentum per particle 

Laughlin pumping

|Z| > |Z0|

~
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More complex surfaces?
✦ Conformal map:                    conserving angles,  

and shapes of infinitesimal objects

✦ The conformal image of a physical flow pattern  
  is still a physical pattern

[Turner, Vitelli and Nelson, Rev. Mod. Phys. 82, 1301 (2010)]

f : U ! V
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✦ Maps linking plane to cylinder: 

✦  

✦ Velocity of the vortex core: 

Vortex on a cylinder

y

x

X

Y

Fplane(Z) = ln(Z � Z0) ! Fcyl,±(z) = ln(e±iz � e±iz0)
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✦ Stream function of N vortices:

✦ Energy:

✦ Energy of a vortex dipole: 
 
grows linearly for 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✦ Different trajectories, depending on the orientation of the dipole axis:

Motion of a vortex dipole

y

x
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Experiments?

[Łacki et al., Phys. Rev. A (2016)]

[Eckel et al., Phys. Rev. X (2014)]

[Gaunt et al., Phys. Rev. Lett. (2013)]

[Schine et al., Nature (2016)]

Ring traps for BECs: Twisted optical cavities:

Cylindrical traps for BECs:
Cylindrical and annular lattices for BECs:
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✦ Potential flow theory describes perfect fluids in 2D

✦ Images and conformal maps allow us to study peculiar geometries

✦               : a direct hydrodynamic analog of Laughlin pumping

✦ On a cylinder, vortices will not stand still!

✦ Single-valuedness of the wave function around the cylinder 
imposes a quantized translational velocity to the vortex core

Conclusions

Z0(�Lz)

Thank you!
N. Guenther, P. Massignan, and A. Fetter

Phys. Rev. A, in press
 arXiv:1708.08903



✦ Cylinder of length L:

✦ Vortex velocity:

Vortex on a finite cylinder

y

x

FL(z) = ln

2

4 #1

�
z�z0
2R , e�L/R

�

#1

⇣
z�z⇤

0
2R , e�L/R

⌘

3

5

L=R

L=5R

L=10R

0.0 0.2 0.4 0.6 0.8 1.0
-2

-1

0

1

2

y0/L

(m
R
/�
)v

x



20

✦ Start with the fluid at rest

✦ Stir the fluid from below at a constant rate

✦ A vortex appears on the lower edge, 
and moves upward

✦ The fluid remains stationary above the vortex

✦ Below the vortex, the fluid rotates 
with exactly     units of angular 
momentum per particle 

Laughlin pumping on a cylinder

~


