Superfluid vortex dynamics on peculiar surfaces

Pietro Massignan

Outline

- Classical vs. superfluid turbulence
- Potential flow for perfect fluids in 2D
- Vortices on an annulus
- Conformal mappings
- Vortices on a cylinder

Collaborators

Nils Guenther

ICFO⁹

Institut de Ciències Fotòniques

Alexander Fetter

N. Guenther, P. Massignan, and A. Fetter Phys. Rev. A, in press arXiv:1708.08903

Classical turbulence

chaotic multiscale viscous

Superfluid vortices

[Yarmchuk, Gordon and Packard, 1979]

[Ketterle's group @ MIT, 2001]

regular crystalline non-viscous

Superfluid hydrodynamics

- Macroscopic condensate wavefunction: $\Psi = \sqrt{n}e^{i\Phi}$
- Superfluid velocity: $\mathbf{v} = \frac{\hbar}{M} \nabla \Phi$
- Vorticity: $\nabla \times \mathbf{v} = \frac{\hbar}{M} \nabla \times \nabla \Phi = 0$ (*irrotational*)
- Quantized circulation: $\oint d\mathbf{l} \cdot \mathbf{v} = \frac{\hbar}{M} \oint d\mathbf{l} \cdot \nabla \Phi = 2\pi j \frac{\hbar}{M}, \qquad j \in \mathbb{Z}$
- Current conservation: $\nabla \cdot (n\mathbf{v}) = 0$
- + For constant density, the fluid becomes *incompressible*: $\nabla \cdot \mathbf{v} = 0$
- SF (non-viscous) + irrotational + incompressible = perfect fluid

2D potential flow

+ For 2D incompressible fluids, $\mathbf{v} = \left(\frac{\hbar}{M}\right) \hat{\mathbf{n}} \times \nabla \chi$ stream function

and the velocity is parallel to iso-contours of χ and orthogonal to iso-contours of Φ

- Perfect fluids in 2D fully described by $F = \chi + i\Phi$
- *F* is a meromorphic function of Z = X + iY

Vortices on a plane

• A single vortex at the origin: $F(Z) = \log(Z)$

✦ A vortex dipole:

$$F(Z) = \log(Z - Z_1) - \log(Z - Z_2)$$

Surface with boundaries

- + As in electrodynamics, use the method of images
- Single vortex on a disk of radius R: $F(Z) = \log\left(\frac{Z Z_0}{Z R^2/Z_0^*}\right)$

Vortex on an annulus

An annulus has two boundaries —> infinite series of images needed

• Potential:
$$F(Z) = n_1 \ln\left(\frac{Z}{R_2}\right) + \ln\left[\frac{\vartheta_1\left(-\frac{i}{2}\ln\left(\frac{Z}{Z_0}\right), \frac{R_1}{R_2}\right)}{\vartheta_1\left(-\frac{i}{2}\ln\left(\frac{ZZ_0^*}{R_2^2}\right), \frac{R_1}{R_2}\right)}\right]$$

1st Jacobi Theta function

Velocity of the vortex core

• A vortex moves with the local uniform flow velocity: $\dot{y}_0 + i\dot{x}_0 = \frac{\hbar}{M} \lim_{z \to z_0} \left[F'(z) - \frac{1}{z - z_0} \right]$

• Annulus with $R_2 = 2R_1$:

Laughlin pumping

- Start with the fluid at rest
- + Stir the fluid from outside at an increasing rate
- A vortex appears on the outer edge, and moves inward
- ◆ The fluid (on average) rotates for |Z| > |Z₀|, but it remains stationary otherwise
- As the vortex crosses the inner edge, stop stirring
- The fluid is left with exactly ħ units of angular momentum per particle

More complex surfaces?

• Conformal map: $f: U \rightarrow V$ conserving angles, and shapes of infinitesimal objects

 The conformal image of a physical flow pattern is still a physical pattern

[Turner, Vitelli and Nelson, Rev. Mod. Phys. 82, 1301 (2010)]

Vortex on a cylinder

- Maps linking plane to cylinder: $Z = e^{\pm iz}$
- $F_{\text{plane}}(Z) = \ln(Z Z_0) \rightarrow F_{\text{cyl},\pm}(z) = \ln(e^{\pm iz} e^{\pm iz_0})$

• Velocity of the vortex core: $v_x = \pm \frac{\hbar}{2MR}$

vortices on a cylinder will *not* stand still Х

Energy of the fluid

• Stream function of *N* vortices: $\chi(\mathbf{r}) = \sum_{i=1}^{N} q_i \chi(\mathbf{r} - \mathbf{r}_i)$

• Energy:
$$E_{\text{tot}} = \frac{nM}{2} \int d^2r |\mathbf{v}(\mathbf{r})|^2$$

$$= \frac{n\hbar^2}{2M} \int d^2r |\nabla\chi(\mathbf{r})|^2$$
$$= \frac{\pi\hbar^2n}{M} \left[N \ln\left(\frac{2R}{\xi}\right) + \sum_{i< j}^N q_i q_j \chi(\mathbf{r}_{ij}) \right]$$

Energy of a vortex dipole:

grows linearly for $r_{12} \gg R$

BKT physics will *not* happen on a cylinder

Motion of a vortex dipole

Different trajectories, depending on the orientation of the dipole axis:

Experiments?

[Eckel et al., Phys. Rev. X (2014)]

Twisted optical cavities:

[Schine et al., Nature (2016)]

Cylindrical traps for BECs:

[Gaunt et al., Phys. Rev. Lett. (2013)]

Cylindrical and annular lattices for BECs:

[Łacki *et al.*, Phys. Rev. A (2016)]

Conclusions

- Potential flow theory describes perfect fluids in 2D
- Images and conformal maps allow us to study peculiar geometries
- $Z_0(\Delta L_z)$: a direct hydrodynamic analog of Laughlin pumping
- On a cylinder, vortices will not stand still!
- Single-valuedness of the wave function around the cylinder imposes a quantized translational velocity to the vortex core

N. Guenther, P. Massignan, and A. Fetter Phys. Rev. A, in press arXiv:1708.08903 Thank you

Vortex on a finite cylinder

• Cylinder of length L: $F_L(z) = \ln \left[\frac{\vartheta_1\left(\frac{z-z_0}{2R}, e^{-L/R}\right)}{\vartheta_1\left(\frac{z-z_0}{2R}, e^{-L/R}\right)} \right]$

Vortex velocity:

Х

Laughlin pumping on a cylinder

- Start with the fluid at rest
- Stir the fluid from below at a constant rate
- A vortex appears on the lower edge, and moves upward
- The fluid remains stationary above the vortex
- Below the vortex, the fluid rotates with exactly ħ units of angular momentum per particle

