Superfluid vortex dynamics on peculiar surfaces

Pietro Massignan

UNIVERSITAT POLITÈCNICA
DE CATALUNYA
BARCELONATECH

ICFO ${ }^{\text { }}$
Institut
de Ciències
Fotòniques

Outline

+ Classical vs. superfluid turbulence
- Potential flow for perfect fluids in 2D
- Vortices on an annulus
+ Conformal mappings
+ Vortices on a cylinder

Collaborators

Nils Guenther

Alexander Fetter

N. Guenther, P. Massignan, and A. Fetter

Phys. Rev. A, in press
arXiv:1708.08903

Classical turbulence

chaotic
multiscale
viscous

Superfluid vortices

[Yarmchuk, Gordon and Packard, 1979]

[Ketterle's group @ MIT, 2001]
regular
crystalline
non-viscous

Superfluid hydrodynamics

* Macroscopic condensate wavefunction: $\Psi=\sqrt{n} e^{i \Phi}$
- Superfluid velocity: $\mathbf{v}=\frac{\hbar}{M} \nabla \Phi$
+ Vorticity: $\nabla \times \mathbf{v}=\frac{\hbar}{M} \nabla \times \nabla \Phi=0 \quad$ (irrotational)
+ Quantized circulation: $\oint \mathrm{d} \mathbf{l} \cdot \mathbf{v}=\frac{\hbar}{M} \oint \mathrm{~d} \mathbf{l} \cdot \nabla \Phi=2 \pi j \frac{\hbar}{M}, \quad j \in \mathbb{Z}$
+ Current conservation: $\nabla \cdot(n \mathbf{v})=0$
+ For constant density, the fluid becomes incompressible: $\nabla \cdot \mathbf{v}=0$
+ SF (non-viscous) + irrotational + incompressible = perfect fluid

2D potential flow

- For 2D incompressible fluids, $\mathbf{v}=\left(\frac{\hbar}{M}\right) \hat{\mathbf{n}} \times \nabla \chi \underbrace{}_{\text {stream function }}$ and the velocity is parallel to iso-contours of χ and orthogonal to iso-contours of Φ
- Perfect fluids in 2D fully described by $F=\chi+i \Phi$
+ F is a meromorphic function of $Z=X+i Y$
+ Cauchy-Riemann conditions readily imply: $v_{Y}+i v_{X}=\frac{\hbar}{M} \frac{\partial F}{\partial Z}$

$$
\frac{\partial \chi}{\partial x}=\frac{\partial \Phi}{\partial y}, \quad \frac{\partial \chi}{\partial y}=-\frac{\partial \Phi}{\partial x}
$$

Vortices on a plane

+ A single vortex at the origin: $F(Z)=\log (Z)$

Velocity field

+ A vortex dipole:
$F(Z)=\log \left(Z-Z_{1}\right)-\log \left(Z-Z_{2}\right)$

Surface with boundaries

- As in electrodynamics, use the method of images
+ Single vortex on a disk of radius $\mathrm{R}: F(Z)=\log \left(\frac{Z-Z_{0}}{Z-R^{2} / Z_{0}^{*}}\right)$

Vortex on an annulus

+ An annulus has two boundaries \rightarrow infinite series of images needed
+ Potential: $F(Z)=n_{1} \ln \left(\frac{Z}{R_{2}}\right)+\ln \left[\frac{\vartheta_{1}\left(-\frac{i}{2} \ln \left(\frac{Z}{Z_{0}}\right), \frac{R_{1}}{R_{2}}\right)}{\vartheta_{1}\left(-\frac{i}{2} \ln \left(\frac{Z Z_{2}^{*}}{R_{2}^{2}}\right), \frac{R_{1}}{R_{2}}\right)}\right]$

1st Jacobi Theta function

Velocity of the vortex core

- A vortex moves with the local uniform flow velocity: $\dot{y}_{0}+i \dot{x}_{0}=\frac{\hbar}{M} \lim _{z \rightarrow z_{0}}\left[F^{\prime}(z)-\frac{1}{z-z_{0}}\right]$
- Annulus with $R_{2}=2 R_{1}$:

Laughlin pumping

- Start with the fluid at rest
- Stir the fluid from outside at an increasing rate
- A vortex appears on the outer edge, and moves inward
* The fluid (on average) rotates for $|Z|>\left|Z_{0}\right|$, but it remains stationary otherwise
- As the vortex crosses the inner edge, stop stirring
- The fluid is left with exactly \hbar units of angular momentum per particle

More complex surfaces?

+ Conformal map: $f: U \rightarrow V$ conserving angles, and shapes of infinitesimal objects

- The conformal image of a physical flow pattern is still a physical pattern

Vortex on a cylinder

- Maps linking plane to cylinder: $Z=e^{ \pm i z}$

$$
\text { - } F_{\text {plane }}(Z)=\ln \left(Z-Z_{0}\right) \quad \rightarrow \quad F_{\mathrm{cyl}, \pm}(z)=\ln \left(e^{ \pm i z}-e^{ \pm i z_{0}}\right)
$$

- Velocity of the vortex core: $v_{x}= \pm \frac{\hbar}{2 M R}$
vortices on a cylinder will not stand still

Energy of the fluid

+ Stream function of N vortices: $\chi(\mathbf{r})=\sum_{i=1}^{N} q_{i} \chi\left(\mathbf{r}-\mathbf{r}_{i}\right)$
- Energy: $E_{\text {tot }}=\frac{n M}{2} \int \mathrm{~d}^{2} r|\mathbf{v}(\mathbf{r})|^{2}$

$$
\begin{aligned}
& =\frac{n \hbar^{2}}{2 M} \int \mathrm{~d}^{2} r|\nabla \chi(\mathbf{r})|^{2} \\
& =\frac{\pi \hbar^{2} n}{M}\left[N \ln \left(\frac{2 R}{\xi}\right)+\sum_{i<j}^{N} q_{i} q_{j} \chi\left(\mathbf{r}_{i j}\right)\right]
\end{aligned}
$$

+ Energy of a vortex dipole: grows linearly for $r_{12} \gg R$

BKT physics

 will not happenon a cylinder

Motion of a vortex dipole

+ Different trajectories, depending on the orientation of the dipole axis:

Experiments?

Ring traps for BECs:

[Eckel et al., Phys. Rev. X (2014)]

Twisted optical cavities:

[Schine et al., Nature (2016)]

Cylindrical and annular lattices for BECs:

Conclusions

- Potential flow theory describes perfect fluids in 2D
- Images and conformal maps allow us to study peculiar geometries
- $Z_{0}\left(\Delta L_{z}\right)$: a direct hydrodynamic analog of Laughlin pumping
- On a cylinder, vortices will not stand still!
* Single-valuedness of the wave function around the cylinder imposes a quantized translational velocity to the vortex core

Vortex on a finite cylinder

- Cylinder of length $\mathrm{L}: \quad F_{L}(z)=\ln \left[\frac{\vartheta_{1}\left(\frac{z-z_{0}}{2 R}, e^{-L / R}\right)}{\vartheta_{1}\left(\frac{z-z_{0}^{*}}{2 R}, e^{-L / R}\right)}\right]$

Laughlin pumping on a cylinder

- Start with the fluid at rest
- Stir the fluid from below at a constant rate
+ A vortex appears on the lower edge, and moves upward
- The fluid remains stationary above the vortex
- Below the vortex, the fluid rotates with exactly \hbar units of angular momentum per particle

