Efimov trimers under strong confinement

Pietro Massignan1, Jesper Levinsen2,3, and Meera M. Parish2,4
1ICFO-Institute of Photonic Sciences (Barcelona), 2Monash University (Melbourne), 3AAS-Aarhus Institute for Advanced Studies (Aarhus), 4London Centre for Nanotechnology (London)

Introduction

The dimensionality of a system fundamentally affects the behaviour of interacting quantum particles. Classic examples range from the fractional quantum Hall effect to high temperature superconductivity. In general, one expects confinement to favour the binding of particles. However, attractively interacting bosons defy this expectation: while three identical bosons in 3D can support an infinite tower of Efimov trimers, only two universal trimers exist in the 2D case.

Here we reveal how these two limits are connected, by investigating the problem of three identical bosons confined by a harmonic potential along one direction. Our results suggest a way to use strong confinement to engineer more stable Efimov-like trimers, which have so far proved elusive.

Bound states in 3D and 2D

3D:
- for $\hbar = 0$, one dimer with energy $-1/\hbar^2$
- n trimers, whose energies may mapped onto another via the transformations $E \rightarrow \lambda^2 E$ and $a \rightarrow \lambda^2 a$ [1,2]

$$V(z) = \frac{1}{2}m^2z^2$$

2D:
- only one dimer of energy E_0, for any scattering length
- two trimers, of energies $-16N_0E_0$ and $-127N_0E_0$ [3]

Scaling symmetry:

Three identical bosons in quasi-2D

When $T < \omega$, particles occupy the ground h.o. level, and are kinematically 2D. However, collisions are still 3D, and allow to populate virtually all h.o. excited states.

STM equation for strong confinement along z [4,5]:

$$T/k_B = k_B T_{c1} - \bar{N} + \bar{N}_J \sqrt{k_B T_{c1}} = 1 \sum_{n=0}^\infty \frac{\lambda^{2n}k_B T_{c1}^{1/2}}{(2n)!} \left(\frac{\hbar^2}{m} \right)^{1/2} \left(\frac{\lambda^2 E}{\hbar^2} \right)^{1/2}$$

where:
- T/k_B is the energy measured from the 3-atom continuum
- k_B is the relative momentum of atom i w.r.t. the pair (j,k)
- $E_{i,j,k}$ and $N_{i,j,k}$ are the h.o. quantum numbers for motion along z of a pair, and of an atom and a pair
- λ is a UV cut-off fixing a_λ (the scattering length at which the ground trimer crosses the 3-atom continuum)
- $f_{n\lambda}$ is the wave function of the relative motion at $z = 0$

Spectra (3D style)

Confined strength: $C_1 = |(a-1)/a$.

Strong confinement: (only two trimers) $|E| \rightarrow |E| + |E| + |E|$

Weaker confinement: (a third trimer appears)

Trimer energy $E \approx \infty$, even outside its regime of existence in 3D⇒resistant to thermal dissociation when $T \ll \omega$

Spectra (2D style)

Very strong confinement: (only two trimers)

Scaling of the first excited trimer disappears for $N \geq 2$

Weaker confinement: (a third trimer appears)

Aspect ratios $2 \langle Z^2 \rangle / \langle \rho^2 \rangle$

Faddeev decomposition:

$$\rho_{x,y} = \rho_{x+y} + \rho_{x-y}$$

Neglecting cross terms in $\rho_{x,y}$

Hyper-spherical potentials and wave functions

Hyper-spherical expansion:

$$q(R, \theta) = \frac{1}{2\pi^2} \left(\frac{\hbar}{\Delta E} \right)^{1/2} \sum_{n=0}^\infty \rho_n(R) \phi_n(R, \theta)$$

Hyper-radial Schrödinger equation:

$$\left(\frac{\hbar^2}{2m} + V(R) \right) \rho_n(r) = \left(E_n + \omega_{1} \right) \rho_n(r)$$

$V(R)$ depends on l/a but not on the 3-body parameter.

When $l/\alpha < 1$, the potential shows a barrier at $R \approx |a|$ with height $\sim 0.15/m\alpha^2$

Wave function for the atom-pair relative motion:

$$\psi(x, z) = \rho^{(1)} \sum_{n=0}^\infty \rho_n(z) \phi_n(x)$$

Crossover trimers have very small weight at short distances, i.e., small overlap with deeply bound states.

Experimental consequences

- the deepest trimers are rather 3D-like for realistic trapings
- no trimers resonance observable when $|a|$ is larger than the repulsive barrier arising from 3D physics; as such, the loss peak of the ground trimer disappears for $C_1 \geq 0.4$
- due to universality of the Efimov spectrum, the loss peak of the first excited trimer disappears for $C_1 \geq 0.4/2.77$

Outlook

- similar avoided crossings should appear in the spectrum of quasi-1D trimers
- since exactly two tetramers are predicted in 2D, we expect those to resist in the dimensional crossover, and actually be stabilized for arbitrarily weak κ-confinements
- strong confinement may be used to engineer more stable, Efimov-like, hybrid trimers: the small weight of the trimer wave function at short distances, due to the presence of a repulsive barrier, should allow for the formation of a many-body state of long-lived trimers.

References

Acknowledgments

Funding from ESP FOTOLATM, ERC AdG OSYRIS, EU EQOAM, EPSRC, Fundació Cellex, Carlsberg Foundation, and a Ramón y Cajal fellowship is gratefully acknowledged.