Nondiffractive light in photonic crystals

- Nondiffractive light in linear Photonic Crystals (PCs)
 - Nondiffractive beams in PCs;
 - Nondiffractive pulses in PCs;
 - Nondiffractive resonators of PCs;
- Nondiffractive light in nonlinear PCs
 - Subdiffractive solitons in nonlinear PCs;
 - Nondiffractive nonlinear resonators

Group of "Dinàmica i òptica no lineal" , FEN, UPC

Group of "Nondiffractive light" : K.Staliunas, R.Herrero, C.Serrat, C.Cojocaru, J.Trull.

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Nondiffractive light in linear Photonic Crystals

diffraction management in BECs (1D lattices)

diffraction management, numerics and experiments in 2D PCs

But also Elimination of diffraction !!

Diffraction

Beam with carrier frequency ω_0 propagating in z direction :

$$E(\vec{r}) = A(\vec{r})e^{i\omega_0 t}$$

Diffraction management

•Localization of non-diffractive regimes Constant ω surf.

$$\nabla \times \left[\frac{1}{\varepsilon(\vec{r})} \nabla \times H(\vec{r})\right] = \left(\frac{\omega}{c}\right)^2 H(\vec{r})$$

H.Kosaka e.a. 1999, J.Witzens e.a. 2002, D.N.Chigrin e.a. 2003, R.Iliew e.a. 2004,...

First brillouin zones

Slowly Varying Envelope Approximation

•Equació d'ones per l'ona electro-magnètica:

$$\nabla^2 \mathbf{E} - \frac{n^2}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0 \qquad \mathbf{E}(\vec{r}) = E(\vec{r})e^{-i\omega_0 t} = A(\vec{r})e^{i(k_0 z - \omega_0 t)}$$

•Si considerem que
$$\frac{\partial E}{\partial t} = 0$$
 : $\nabla^2 E + \frac{n^2 \omega_0^2}{c^2} E = 0$

•Si considerem que
$$\frac{\partial^2 A}{\partial z^2} \ll 0$$
 $\frac{\partial^2 A}{\partial z^2} \approx 1$ $\nabla_{\perp}^2 A + 2ik_0 \frac{\partial A}{\partial z} = 0$

•Sols considerant una variable transversa i afegint Δn :

$$\left(2ik_0\,\partial/\partial z+\partial^2/\partial x^2+2\Delta n(x,z)k_0^2\right)A(x,z)=0$$

Paraxial approx. and sinusoidal Δn

- <u>Allows:</u>
 - Analytical expressions
 - Generalizations:
 - Linear
 - Nonlinear (e.g. to BECs);

Inscription of the index modulation

```
\Delta n(\vec{r}) = 2m \left( \cos(\vec{q}_1 \vec{r}) + \cos(\vec{q}_2 \vec{r}) \right)
```


Photorefractive materials

Dynamical photonic crystals ----- Dynamical diffraction management

Diffraction elimination

Most homogeneous Bloch mode (A)

Zero diffraction:

Normalization

 $f = 2mk_0^2/q_\perp^2$ - modulation depth $Q_{II} = 2q_{II}k_0/q_\perp^2$ - geometry

Non-diffractive curve

Analytical curve for f<<1

Numerics 2D

Numerics 3D

Subdiffraction. Analytic

Subdiffraction. Numerics

Large propagation distance

The smallest non-diffractive structures

3D Nondiffractive Photonic Crystals

Experiments with PCs

Photorefractive materials

•Simulations with experimental parameters

•Beam:

Wavelength = 532 nm Initial width = 12.6 μm

Propagation length = 4.25 mm

•Photonic crystal:

Possible applications:

Multimode nondiffractive wave-guides

Fibers transporting patterns
Wave-guides in electronic circuits
....

Diffractive fibers

Nondiffractive fibers

1 fiber transport 1 bit (light or no light)

1 fiber transport 1 pattern

•Microscopy, photolitography, ...

Multimode Nondiffractive Fibers and Wave-Guides:

512:

400

300

200

100

Bending

Radi de curvatura = 9 x diàmetre fibra

1000 1500 2000 2500

500

Ó

3000 3500

1000 1500 2000 2500 3000 3500

z

4000

4000

-0,5 ^{Amplit}ude

-0,0

-1,0

-0,5 Amplitude

-0,0

512=

400

300 -

ń 500

> 200 100 -

Non-diffractive pulses

$$\left(\frac{1}{c}\frac{\partial}{\partial t} + \frac{\partial}{\partial z} - \frac{i}{2k_0}\frac{\partial^2}{\partial x^2} - i\Delta n(x,z)k_0\right)A(x,z,t) = 0$$

- •Carrier frequencies interval
- Small variations of the carrier frequency $\omega = \omega_0 (1 + \delta \omega)$

 $f = 2mk_0^2/q_\perp^2$ - modulation depth; $Q_{II} = 2q_{II}k_0/q_\perp^2$ - geometry; $k_0 = \omega_0/c$

Small index modulations (f<<1)

$$K_{II} = K_{II,0} + \frac{\delta\omega}{V_0} + \frac{\delta\omega^2}{4} + \alpha \cdot \delta\omega K_{\perp}^2 \qquad \qquad K_{II,0} = \frac{(1 - Q_{II,0})^2}{4} \quad \alpha = \frac{3}{(1 - Q_{II,0})}$$
$$\frac{1}{V_0} = \frac{(1 - Q_{II,0}) \cdot (3 - Q_{II,0})}{2}$$
$$\left(\frac{\partial}{\partial Z} - iK_{II,0} + \frac{1}{V_0}\frac{\partial}{\partial T} + \frac{i}{4}\frac{\partial^2}{\partial T^2} - \alpha \frac{\partial}{\partial T}\frac{\partial^2}{\partial X^2}\right)A = 0$$

•Gaussian pulse in x and t

Propagation length: 375 µm

Integration of the main equation

$$\left(\frac{1}{c}\frac{\partial}{\partial t} + \frac{\partial}{\partial z} - \frac{i}{2k_0}\frac{\partial^2}{\partial x^2} - i\Delta n(x,z)k_0\right)A(x,z,t) = 0$$

Input

\cdot Gaussian pulse in x and t

Propagation length: 0.45 mm

z (100µm)

Filtrat per treure les oscil·lacions degudes a la modulació de ∆n

Output without PC

Invariant spacio-temporal shapes

Non-diffractive resonators

•Transmitted field
$$A(k_{\perp}) = A_0(k_{\perp}) \frac{t^2}{1 - r^2 e^{i\varphi}}$$

reflection r, transmission t and phase shift φ of the cavity

Different ϕ for each transverse component

$$\varphi(k_{\perp}) \cong \frac{-k_{\perp}^2}{2k_0} 2L = -dk_{\perp}^2$$

effective diffraction of the cavity $d=\lambda L/2\pi$.

Gaussian spectrum filtered by the resonator

Input beam

Output beam

Scann of the cavity length

Photonic crystal resonators

Photonic crystal spacer

•No Rings. Only the central peak remains (all transverse waves in phase).

•Free spectral range does not depend on w_0 .

•Output width does not depends on L.

Propagation in Nonlinear PC's (1D transvers)

$$\left(2ik_0\frac{\partial}{\partial z} + \frac{\partial^2}{\partial x^2} + 2\Delta n(x,z)k_0^2 - c|A|^2\right)A = 0$$

Diffraction
$$\frac{\partial^2 A}{\partial x^2}$$
 $rightarrow c |A|^2$ Nonlinearity
Solitons

Solitons: Amplitude-Width relationship

Near the linear non-diffractive curve

Nonlinear PCs (2D transvers)

Bose-Einstein Condensates

$$\left(2ik_0\frac{\partial}{\partial z} + \frac{\partial^2}{\partial x^2} + 2\Delta n(x,z)k_0^2 - c|A|^2\right)A = 0$$
$$i\frac{\partial A}{\partial T} = \left(d_2\nabla^2 - d_4\nabla^4 + C_B|A|^2\right)A$$

NLSE:
$$\frac{\partial A}{\partial t} = i \left(d_{eff} \nabla^2 - |A|^2 \right) A$$

Optical nonlinearitiesBose-Einstein Cond. (BEC's)

Stable solitons in 2D and 3D

Non-diffractive Nonlinear resonators

$$\partial A(r)/\partial t = \dots + id\nabla^2 A(r) + \dots$$

size
$$\approx d^{1/2} \approx \sqrt{\lambda \cdot L \cdot Q}$$

$$\lambda \approx 1 \ \mu m \quad L \approx 10 \ \mu m \quad Q \approx 100$$

intensity Patterns and dissipative structures; gain Cavity Solitons

CV in VCSELs, lasers with saturable absorber, OPOs, Photorefractives,

Taranenko, Weiss, Kuszelewicz , 2000

•Nonlinear photonic crystal resonators:

Bibliography

- •E. Yablonovitch, 1987; S. John, 1987;
- •H.S.Eisenberg et al. 2000; R. Morandotti et al. 2001;
- •Pertsch *et al.* 2002; O. Zobay *et al.* 1999;
- •Yu.S.Kivshar *et al.* 2003; H.Kosaka e.a. 1999,
- •J.Witzens e.a. 2002, D.N.Chigrin e.a. 2003,
- •R.Iliew e.a. 2004

•K.Staliunas, Mid-band Dissipative Spatial Solitons, Phys. Rev. Letts, **91**, 053901(2003)

•K. Staliunas and R. Herrero, *Nondiffractive propagation light in photonic crystals*, Phys.Rev.E 73, 023601 (2006) ; subm. 2004, arXiv: physics/0501115.

•K. Staliunas, C.Serrat, C.Cojocaru, J.Trull and R. Herrero, *Nonspreading Light Pulses in Photonic Crystals*, subm. 2005, arXiv: physics/0505153, accepted in PRE

•K.Staliunas, R.Herrero, G.Valcarcel and N.Achmediev, *Subdiffractive Solitons in Two-Dimensional Nonlinear Schrödinger Equation* 2006, submitted

•K.Staliunas, G.Valcarcel and R.Herrero, *Sub-Diffractive Band-Edge Solitons in Bose-Einstein Condensates in Periodic Potencials*, 2006, submitted

Nondiffractive-nondispersive pulses?