El maravilloso mundo de los Cristales Líquidos

Sergio Diez Berart Grup de Caracterització de Materials

Grup de Caracterització de Materials (GCM)

Contenido

- Aplicaciones de los CL
- Breve historia
- Moléculas de CL
- Mesofases
- Técnicas experimentales
- Tipos de CL
- Nanoconfinamiento

Pantallas CL

Microdispositivos

Investigación actual

Armamento

Consumo

Electrónica

Biotecnología

Historia

1888. F. Reinitzer (botánico austríaco). 2 puntos de fusión en derivados del colesterol

Friedrich Reinitzer(1857 – 1927)

1889. O. Lehmann (cristalógrafo alemán). Cristal líquido

1^{er} tercio siglo XX. Olvidados por diversos prejuicios 1911. C. Mauguin describe estructura y propiedades

2° tercio siglo XX. Eclipsados por otros avances
1936. 1ª aplicación: LC Light Valve

Principio años 60. Dispositivos electrónicos. Se necesita nexo entre lo microscópico y lo macroscópico: CL

Cristales Líquidos

Mesofase: Estado intermedio entre el sólido cristalino y el líquido isótropo Mesógeno: Material que presenta una o varias mesofases

- Termótropos: Cambios de fase con la temperatura
- Liótropos: Cambios de fase con la concentración

Moléculas termótropas

Núcleo rígido (uniaxialidad) y cadenas terminales (fluidez)

C₁₀H₁₂O

Calamítica

Discótica

•

 $\boldsymbol{\mu}_{t}$

Mesofases calamíticas

• Dirección preferente: director molecular n

Mesofases quirales

- Moléculas quirales: estructura helicoidal
- SmC*: polarización espontánea

SmC*

Colestérica (N*)

Mesofase SmC*

Polarización espontáneaFerrolectricidadBiestabilidad

Microscopía óptica de polarización

Microscopio Kyowa Microlux-12Platina Linkam

Calorimetría diferencial de barrido modulada (MDSC)

Analizadores de impedancia:Alplha (Novocontrol)HP 4192 AAgilent 4291 A

Modos dieléctricos (ω₂)

Modos dieléctricos (ω₂)

Modos dieléctricos (ω_3)

Modos dieléctricos (ω_3)

Modos dieléctricos (ω_4)

Modos dieléctricos (ω_4)

Medida de la polarización espontánea

Histéresis ferroeléctrica

CL Cianobifeniles

nCB

Años 60 Moléculas sencillas Estudios fundamentales: Transiciones de fase Dinámica molecular etc...

Mezclas binarias de Cianobifeniles

M. B. Sied et al. J. Phys. Chem. B, 107, 7820 (2003)

Dímeros

D. A. Dunmur et al. *J.Chem.Phys.*, **115**, 8681 (2000) S. Diez, et al. *Liq. Cryst.*, **30**, 1021 (2003)

1 unidad rígida en forma de V + 2 cadenas terminales

Displays electroópticos

•Dinámica más lenta que en CL ferroeléctricos convencionales

Displays electroópticos

Dinámica más lenta que en CL ferroeléctricos convencionales

Bananas: Fase B₂

Fase esméctica helicoidalAntiferroelectricidad

 \boldsymbol{E}

 \bigotimes

Displays electroópticos

•Dinámica más lenta que en CL ferroeléctricos convencionales

Bananas: Fase B₂

Fase esméctica helicoidalAntiferroelectricidad

E

=0

Displays electroópticos

•Dinámica más lenta que en CL ferroeléctricos convencionales

Confinamiento de CL

- Antecedentes:
 - Cristales fotónicos
 SiO₂ con huecos en FCC

- Aplicaciones:
 - Láseres, conmutadores electroópticos, memorias ópticas...
- Confinamiento:
 - Estructura dieléctrica desordenada + CL
 - Elección estructura
 - Tratamiento
 - Elección CL

Estructuras pseudo-ordenadas

Anopore, Nucleopore

 $\emptyset = 0.2 \,\mu m = 200 \,nm$

60 µm

Estructuras desordenadas

Membranas

 $\emptyset = 0.01 \,\mu m = 10 \,nm$

Partículas dispersantes

Aerogel, Vycor, CPG

Dendrímeros

Estructuras mixtas

Zeolitas

$\emptyset = 0.001 \,\mu m = 1 \, nm$

Doble confinamiento:

•Orden dentro de las membranas

•Desorden fuera de las membranas (dispersión)

70CB: Calor específico

S. Diez, et al. J. Phys. Chem. B, 109, 23209 (2005)

70CB: Permitividad estática

S. Diez, et al. J. Phys. Chem. B, 109, 23209 (2005)

Capa nemática inducida

•Dentro de la capa: Moléculas inmóviles

•Fuera de la capa Dinámica idéntica al bulk

¿Guías ópticas?

Gracies per la vostra atenció